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Wildfires have increasingly posed significant environmental, social, and economic 
challenges across Europe. Recent Extreme Wildfire Events (EWEs) have highlighted the 
need for comprehensive, data-driven approaches to wildfire prediction, prevention, and 
response. The FIRE-RES project, funded under the European Commission’s Horizon 2020 
initiative, aims to address these challenges by developing innovative technologies and 
strategies to enhance fire resilience. This report, prepared collaboratively by Spire and 
the Institut Cartogràfic i Geològic de Catalunya (ICGC), focuses on two essential 
components of this project: atmospheric and vegetation data collection. Through 
advanced satellite remote sensing techniques, each aspect contributes critical insights 
into both the environmental conditions that drive wildfires and the impacts of these 
events on the ecosystem. 

 

The atmosphere plays a critical role in the development, spread, and intensity of wildfires. 
Conditions such as temperature, humidity, wind speed, and pressure influence the 
likelihood and behaviour of fires. Therefore, understanding and forecasting atmospheric 
conditions is crucial for wildfire preparedness and response. Satellite-based Radio 
Occultation (RO), a technique that collects atmospheric data by observing the refraction 
of radio signals as they pass through the atmosphere, offers high-resolution, unbiased 
profiles of these essential parameters. 

Spire, leveraging its constellation of nanosatellites, has implemented RO technology to 
enhance atmospheric profiling. These satellites collect RO data from multiple Global 
Navigation Satellite System (GNSS) constellations, such as the Global Positioning System 
(GPS) and Galileo, delivering global atmospheric profiles with high vertical resolution. The 
data collected is assimilated into Spire’s weather prediction models to create detailed 
forecasts. This process includes refining initial conditions for Numerical Weather 
Prediction (NWP) models, improving forecast accuracy, and enabling more precise 
predictions of weather variables, such as temperature, wind, and humidity that directly 
influence wildfire risks. 

The RO data’s ability to produce unbiased, globally distributed profiles has proven 
indispensable for enhancing weather model performance, especially in remote and data-
scarce regions. This is achieved by integrating bending angle measurements into data 
assimilation frameworks, which optimize the forecasts by reconciling observational data 
with model outputs. Additionally, the high vertical resolution provided by RO technology 
allows Spire to monitor conditions across the full atmospheric vertical column, from the 
lower troposphere up to the upper stratosphere. This capability supports early detection 
and real-time tracking of weather conditions that can exacerbate fire hazards, such as 
prolonged dry spells or high wind speeds, which fuel fire spread. 
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Beyond atmospheric conditions, the state of vegetation plays a pivotal role in wildfire 
dynamics. Fuel characteristics, such as biomass density and moisture levels, are directly 
related to fire intensity and spread. Accurate assessments of vegetation health, biomass 
distribution, and fuel conditions are essential for understanding the full scope of wildfire 
impact and for planning effective recovery measures. In Part 2 of this report, ICGC applies 
satellite remote sensing, coupled with Artificial Intelligence (AI) methodologies, to 
monitor vegetation and analyse post-fire recovery in affected areas. 

ICGC’s work in this report centres around high-resolution vegetation monitoring, utilizing 
multi-temporal satellite imagery to derive key vegetation indices such as the Normalized 
Difference Vegetation Index (NDVI) and the Vegetation Growth Index (VGI). By analysing 
time-series data from Sentinel-2 and other satellite sources, this approach enables an 
assessment of both pre- and post-fire vegetation dynamics. Estimations of biomass 
consumption and CO₂ emissions are derived by analysing the burn severity using indices 
like the differenced Normalized Burn Ratio (dNBR). This index allows for the identification 
of vegetation loss, providing an essential measure of the ecological impact of wildfires 
and the potential carbon release due to biomass consumption. 

ICGC’s integration of AI models further enhances vegetation monitoring by capturing 
trends and predicting future vegetation conditions based on historical data. These AI-
driven analyses utilize time-series data to identify patterns in vegetation health, assess 
post-fire regrowth rates, and forecast future vegetation vulnerabilities under changing 
climate conditions. Together, these techniques provide a comprehensive understanding 
of vegetation’s role in fire dynamics and recovery, supporting proactive fire management 
strategies. 

 

 

The integration of atmospheric and vegetation data collection reflects a holistic approach 
to wildfire resilience. By combining Spire’s atmospheric profiling capabilities with ICGC’s 
advanced vegetation monitoring, the FIRE-RES project aims to create a comprehensive 
framework for wildfire management. This approach allows for more accurate fire risk 
assessments, timely decision-making, and improved resource allocation in response to 
evolving fire conditions. 

Through real-time data assimilation and predictive modelling, this collaborative effort 
strengthens the ability of European stakeholders to prepare for and respond to EWEs. 
This data-driven approach, informed by both weather and vegetation conditions, not only 
supports immediate firefighting needs but also contributes to long-term strategies for 
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ecosystem restoration and climate adaptation. The methodologies presented in this 
report exemplify the innovative solutions that FIRE-RES brings to wildfire management, 
contributing to more resilient landscapes and communities across Europe.  
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Part 1 presents the outcomes of Subtask 5.2.2 within Work Package 5 (WP5) of the FIRE-
RES project, specifically focused on leveraging Spire’s atmospheric data to enhance 
wildfire resilience. By integrating satellite data with advanced forecasting models, we aim 
to provide actionable insights that support decision-making processes and enable more 
effective responses to Extreme Wildfire Events across Europe. 

In the text, both GNSS-RO and RO are used interchangeably to refer to Global Navigation 
Satellite Systems Radio Occultation, a technique for capturing high-resolution 
atmospheric data essential to weather forecasting. 

 

Spire is a global provider of space-based data, analytics, and space services, offering 
unique datasets and powerful insights about Earth’s weather and climate. Spire builds, 
owns, and operates a fully deployed satellite constellation that observes the Earth in real-
time using radio frequency technology (Cappaert, 2018). Since its founding in 2012, Spire 
has deployed the world’s largest constellation of multipurpose satellites with over 175 
satellites launched into orbit and over 600 years of flight heritage. Spire additionally 
operates a network of more than 30 ground stations globally that enables the timely 
downlink and dissemination of data collected on-orbit to end users. 

The collection of Global Navigation Satellite System (GNSS) radio occultation data is one 
of the primary purposes of Spire’s constellation of satellites. GNSS radio occultation is an 
atmospheric remote sensing technique that utilizes L-band radio frequency 
transmissions from GNSS satellites in medium-earth-orbit and corresponding receivers’ 
onboard satellites in low-earth-orbit. During a radio occultation (RO) sounding, the 
transmitted GNSS signal traverses the Earth’s atmosphere where it undergoes a level of 
refraction dependent on the properties of the atmosphere. The primary variable of 
interest during a RO sounding is a vertical profile of the amount signal bending induced 
by the atmosphere, which is a product of more commonly understood atmospheric 
variables of temperature, pressure, and water vapor. The amount of bending induced by 
the atmosphere can be precisely estimated by measuring the GNSS signal change over 
the course of an RO sounding and carefully removing instrumental and geometrical 
effects. The GNSS-RO method has many advantages over other atmospheric remote 
sensing techniques including high vertical resolution, and minimal biases. Consequently, 
it has become one of the most important observations for improving numerical weather 
forecasting through data assimilation, ranking only behind microwave radiance and high 
spectral-resolution infrared data in operational impact (Cardinali & Healy, 2014). 
Additional characteristics of the RO technique such as long-term stability and self-
calibration make it well suited to act as a climate benchmark (Lackner et al., 2011).  

RO has a rich history of research and development that dates back to the early 1960s 
when scientists used radio links between Earth and the Mariner 3 and 4 spacecraft to 
study the atmospheric properties of Mars. GNSS-RO was demonstrated for remote 
sensing of the Earth’s atmosphere for the first time by the GPS/MET instrument in 1995 
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(Rocken et al., 1997). Many additional publicly funded satellite missions collecting GNSS-
RO have since followed including CHAMP, SAC-C, COSMIC-1, COSMIC-2, and MetOp A/B/C. 
The COSMIC-1 mission, launched in 2008, was particularly instrumental in demonstrating 
the potential value of RO data in the improvement of operational global weather 
forecasting. Numerous studies were able to quickly demonstrate the utility of COSMIC-1 
data in improving global weather forecasts and hurricane forecast tracks (Anthes et al., 
2008; Cucurull et al., 2010; Marshall et al, 2012). Furthermore, observation impact studies 
have using simulated RO data have shown that the impact of RO data on numerical 
weather prediction increases as the number of assimilated profiles is scaled upward with 
no saturation up to 128,000 profiles per day (Harnisch et al, 2013; Bauer et al., 2014). As 
of today (2024), this number is over 10 times greater than the total number of RO profiles 
available from publicly funded satellite missions. 

 

As of July 2024, Spire has launched over 90 satellites with the capability to collect GNSS 
signals for RO and other applications. Most of the GNSS-RO capable satellites that have 
been launched have adopted the 3U CubeSat form factor (Figure 1). The advantages of 
building and launching satellites with these small dimensions are well known and include 
lower engineering costs, easier access to space as secondary payloads on launch vehicles, 
and faster manufacturing time. Spire has miniaturized and advanced the capability 
beyond other RO receivers without reducing performance. Each Spire satellite that is 
currently in-orbit hosts multiple payloads onboard that can operate concurrently to 
deliver data to a diverse set of end users downstream. 

 

 

Figure 1 Picture of Spire’s 3U nanosatellite capable of collecting GNSS-RO measurements 

 

As illustrated in Figure 1, each GNSS-RO capable satellite is equipped with one or two 
limb-facing “RO” antennas to collect GNSS signals that are occulted by the Earth’s 
atmosphere. These GNSS signals are tracked using Spire’s in-house designed and 
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manufactured STRATOS software-designed receiver. Since being introduced into orbit in 
2016, the STRATOS receiver has undergone years of continuous iteration that has 
produced the unmatched ability to efficiently track GNSS signals at science-grade quality 
while optimizing size and power consumption. 

Years of rapid development and in-house innovation have produced the latest version of 
Spire’s RO payload that compares favourably with any other GNSS-RO payload in the 
world. A summary of Spire’s receiver capabilities in comparison to COSMIC-2, currently 
the largest publicly funded RO mission, is provided in Table 1. Like the receiver flown for 
the COSMIC-2 mission, Spire performs open-loop tracking in order to consistently 
measure the signal down to the lowest layers of the troposphere, a region that has been 
historically difficult to track due to signal fading and dynamics, but crucial for Numerical 
Weather Prediction (NWP). However, the Spire receiver can collect approximately twice 
the number of profiles per satellite compared to COSMIC-2 due to its capability of tracking 
all major GNSS constellations (GPS, GLONASS, Beidou and Galileo). The one advantage 
where the COSMIC-2 receiver has over Spire’s STRATOS is the received signal-to-noise 
ratio (SNR). This is a result of COSMIC-2's larger satellite dimensions, which allows for 
larger antenna size and gain. However, this does not necessarily translate to better 
measurement quality as described later in the deliverable. 

 

Table 1 Comparison between Spire and COSMIC-2 receiver capabilities. COSMIC-2 values are 
taken from https://space.oscar.wmo.int/instruments/view/tgrs_cosmic_2 

GNSS Constellations 
Tracked

GPS, GLONASS, Beidou, 
Galileo 

GPS, GLONASS, Galileo (as 
of 2024) 

Maximum number of 
occultations collected per 
24 hours per receiver

2000 900 

Power < 6 W 65 W 
Coverage 90º S – 90º N 45º S – 45º N 
Tracking technique Open-loop Open-loop 
Signal-to-noise Ratio (V/V) 600 2,500 

 

2.2.1 GNSS-RO technology 
Originally designed for positioning, navigation and timing purposes, electromagnetic 
signals transmitted from Global Navigation Satellite System (GNSS) constellations, such 
as GPS (USA), Galileo (Europe), GLONASS (Russia) and Beidou (China), are now being used 
for a variety of scientific and technological applications. One such application is the 
measurement of atmospheric properties through a technique called radio occultation. In 
a radio occultation, a signal transmitted from a GNSS satellite passes through the limb of 
the Earth’s atmosphere, is delayed and bent due to refraction, and subsequently, 
received by a GNSS receiver in a low Earth orbit (LEO).  
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Figure 2 depicts an example of a setting radio occultation scenario where a GNSS signal 
descends through lower portions of the atmosphere over a short period of time. By 
precisely recording and analysing the signal phase and amplitude during the occultation 
event, vertical profiles of atmospheric properties, such as pressure, temperature and 
humidity from 0 to 60 km altitude, can be derived. Accurate retrievals of atmospheric 
profiles are made possible due to the stability of the GNSS signal frequency, which is 
essential to computing the bending and delay of the signal as it passes through the 
atmosphere. Past satellite missions have demonstrated that radio occultation 
measurements of the atmosphere are accurate and have an enormous impact on 
weather specification and forecasting (Healy et al., 2007; Cucurull et al., 2008). 

 

 

Figure 2 Illustration of the radio occultation scenario. Red lines depict the signal path from a 
GPS transmitting satellite to the receiver on orbiting LEO spacecraft. Over the course of 

several minutes, the signal path passes through different vertical regions of the atmosphere. 
The observed bending/delay of the signal can be analysed to estimate properties of the 

ionosphere and atmosphere. 
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Spire currently utilizes the radio occultation technique to provide both atmospheric 
profiles and ionospheric measurements on a daily basis. Each satellite in Spire’s LEO 
constellation is equipped with a custom receiver that tracks GNSS signals at two different 
frequencies through multiple antennas. The main purpose of the high gain antenna, 
approximately aligned with the Spire satellite velocity direction, is to collect GNSS signals 
that pass through the atmosphere. Each occulted signal is tracked at 50 Hz sampling using 
a state-of-the-art, open-loop tracking technique (Sokolovskiy et al., 2006), which employs 
an a priori model of the atmosphere to aid in the tracking of a GNSS signal. This technique 
is necessary to track the signal as it passes through the lowest portion of the atmosphere 
where signal dynamics are large and received signal amplitudes are degraded. A second 
upward-facing antenna is utilized to collect simultaneous, dual-frequency signals from 
multiple GNSS satellites at 1 Hz sampling for precise orbit determination (POD) purposes 
and derivation of ionospheric measurements. As explained in detail in later sections of 
this document, the determination of each Spire satellite position to an accuracy of several 
centimetres is crucial to obtaining accurate retrievals of atmospheric profiles during radio 
occultation measurements. 

2.2.2 GNSS-RO Data Processing 
The main purpose of this section is to explain how radio occultation data collected from 
each Spire satellite are processed to produce final atmosphere and ionosphere products. 
The atmospheric portion of the processing chain is comprised of three major steps 
(Figure 3): precise orbit determination, excess phase processing, and occultation 
inversion. All three segments of the atmospheric processing chain are briefly described 
within the subsections below. 

 

 

Figure 3 Overview of the atmospheric and ionospheric processing chain including raw, 
intermediate and final file formats assuming one Spire satellite. The block diagram begins 

with the raw data downlinked from the satellite to the ground and ends with the final 
atmosphere and ionosphere products. 
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Precise Orbit Determination 

The inversion of GNSS occultation signals into atmospheric profiles of refractivity and 
temperature requires the accurate estimate of the signal bending angle as it passes 
through the atmosphere. One component necessary for the accurate estimation of signal 
bending angle is the precise position and velocity of both the GNSS satellite transmitter 
(~20,000 km above the Earth) and the Spire satellite receiver in a LEO orbit (~500 km 
above the Earth) during an occultation event. Due to the wide variety of applications using 
GNSS signals, the positions and velocities of each GNSS satellite are available through 
external sources and known to within several centimetres. This leaves the challenging 
task of estimating the position and velocity of the Spire satellite receiver to an accuracy 
of several centimetres and sub-mm/s, respectively. 

To estimate each Spire satellite orbit, the Spire processing system employs a precise orbit 
determination software, RTOrb. The main inputs to the software are the orbital 
positions/velocities of each GNSS satellite and the pseudo-range and carrier phase 
measurements collected by the Spire receiver. The software computes the Spire satellite 
orbit position/velocity estimates at each time step by blending the input observations 
together with a complex orbit model through Kalman filtering. The orbit model accounts 
for both gravitational and non-gravitational forces, such as atmospheric drag and solar 
radiation pressure, which act on the Spire satellite as it orbits the Earth. Long (at least 50 
minutes), continuous, dual-frequency observations of multiple GNSS satellites (at least 4 
simultaneous) are required to achieve orbit estimates of less than 10 centimetres. 

Once orbit positions are determined, Spire’s processing chain includes excess phase 
processing to calculate the phase delay induced by atmospheric refraction. This excess 
phase, computed using an a priori atmospheric model, is then used to derive bending 
angle profiles, which serve as the input for further atmospheric property retrievals. 

 

Excess Phase Processing 

The other major component needed to estimate the atmospheric bending angle required 
for radio occultation inversion is the estimation of the relative signal phase delay induced 
by the Earth’s atmosphere, which shall be referred to as “excess phase”. The equation 
below shows how the excess phase in unit distance at each time step during the 
occultation event can be estimated given carrier phase observation (⍴), the straight-line 
distance between the GNSS and Spire satellite (R), and the receiver clock error multiplied 
by the speed of light (𝑐 ⋅ [𝛥𝑐𝑙𝑜𝑐𝑘]). 

 

Δphase = 𝜌 − 𝑅 − 𝑐 ⋅ Δ𝑐𝑙𝑜𝑐𝑘 

 

Due to the open loop tracking mode of the receiver, the carrier phase observation 
(ignoring the ambiguity term) is actually a combination of two quantities: the a priori 



9 

phase model and residual phase measurements based on the difference between the 
modelled phase and the true signal phase. The straight-line distance, R, can be computed 
given the GNSS satellite transmitter and Spire satellite receiver orbit positions produced 
from the precise orbit determination. The receiver clock error imparts an error in the 
carrier phase observation (⍴) and consequently must be estimated and removed to 
compute a precise excess phase measurement. This task can be done by using 
simultaneous phase observations from a non-occulting GNSS satellite as a reference. It 
should be noted that the equation above is a simplification of the equation used in the 
processing software. The actual excess phase processing takes into account other minor 
corrections, such as the transmitter clock error, relativity terms, and transmitter and 
receiver phase offsets, in order to estimate the excess phase to within several 
centimetres. 

 

Radio Occultation Inversion 

The process of inverting the computed excess phase delay and orbit positions to profiles 
of atmospheric refractivity and temperature is briefly summarized here. Further details 
on the inversion techniques can be found in the references provided at the end of the 
document. 

The excess phase delay is first pre-processed to remove half cycle and full cycle jumps. 
Half cycle jumps are mainly observed in the L1 excess phase delay due to 50 Hz navigation 
bit modulation of the GNSS signal. The effects of the navigation bits are removed from 
the excess phase delay by obtaining the GNSS navigation bits from an external provider. 
Full cycle phase jumps are caused by the residual phase wrapping inherent in the open 
loop tracking mode, which are removed after eliminating the navigation bit modulation 
effects.  

After the excess phase delay is reconstructed, a time derivative of the excess phase is 
computed to obtain the Doppler frequency. Bending angle profiles as a function of impact 
parameter (see Figure 4 for illustration) can be obtained by relating the estimated 
Doppler frequencies to the occultation geometry consisting of the transmitter and 
receiver positions and velocities. This is commonly referred to as the geometric optical 
method. However, the geometric optical method breaks down when the signal passes 
through the lowest portion of the atmosphere due to multipath propagation and 
diffraction. In this region, a wave optical processing method must be employed, which 
takes into account the signal amplitude, excess Doppler frequency, and multiple ray path 
geometry to derive the bending angle profile. Further details on this method can be found 
in Gorbunov and Lauritsen, 2004 and Gorbunov et al., 2011. 
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Once the bending angle profiles for both frequencies are obtained, a statistical 
optimization is applied to remove the effects of the ionosphere. Refractivity profiles can 
be retrieved from the bending angle profile by using an Abel transform (Rocken et al., 
1997). Finally, temperature profiles are obtained from refractivity profiles using the 
relation shown in Figure 4, along with a priori atmospheric information given from a 
model. 

 

Figure 4 Occultation diagram illustrating the definition of bending angle and impact 
parameter. Bending angle profiles as a function of impact parameter allow for the derivation 

of atmospheric refractivity (N) profiles as a function of altitude. The relation between 
refractivity and temperature (T) as well as pressure (P), water vapor (Pw) and ionospheric 

electron density (ne) is given in the equation contained in the figure. 

 

An example of a temperature profile derived from radio occultation measurements 
collected by a Spire satellite is presented in Figure 5. The Spire-derived temperature 
profile is compared to the NOAA’s Global Forecast System (GFS) weather model 
prediction, as well as temperature data derived from a radiosonde. From the plot, it can 
be observed that applying the radio occultation technique on Spire measurements can 
result in accurate temperature profiles from 40 km to the lowest few kilometres, which 
are crucial for weather forecasting. 

Finally, it should be noted that although products of temperature and refractivity are 
produced by the radio occultation inversion process, the product that has the most value 
to weather forecasting models is bending angle. This is because the retrieval of 
refractivity and temperature profiles from bending angle by means of the Abel transform 
assumes a spherical symmetry of the atmosphere. The assumption decreases the value 
of these variables for assimilation by weather models because the atmosphere is not one-
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dimensional and often has strong horizontal variability. Hence, bending angle is usually 
selected as the primary radio occultation data product for weather model assimilation. 

 

 

 

Figure 5 Example of a dry temperature profile derived from radio occultation data collected 
by a Spire satellite. The Spire observation is compared to a temperature profile predicted by 
the GFS weather model  and temperature data obtained from a nearby radiosonde (RAOB). 

 

Geolocation of RO profiles 

RO profile can be seen as a sequence of rays. Each ray is characterized by impact 
parameter and bending angle and each ray has a point closest to the Earth ellipsoid WGS-
84. This point has a latitude/longitude of its projection on the ellipsoid. One ray out of the 
whole sequence corresponds to the condition when a straight line (not the ray) between 
a transmitter and a receiver touches the ellipsoid. This touching point is called 'occultation 
point'. The occultation point is considered as a location of the whole RO profile. This 
location is used for statistical comparison with background profiles: either refractivity 
calculated at this point and time from interpolated atmospheric parameters, or bending 
angle calculated from that refractivity. During such a comparison we neglect horizontal 
variations of atmospheric parameters. 

3D assimilation of RO measurement is done in a different way: it takes into account 
different ray trajectories at different impact parameters. The location, the azimuth, and 
the impact parameter are used to calculate model bending angles for each individual ray. 
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The best way to geolocate refractivity or dry temperature data is to use the location (i.e. 
latitude/longitude) of 'perigee point at occultation point' and assume that the profile is 
vertical. This assumption is more accurate for small boresight angles <= 30-40 degrees, 
and more questionable for larger angles. Refractivity and dry temperature given in 
netCDF and BUFR files are derived from RO data using Abel transform, which implies a 
spherically symmetric atmosphere in the area of sounding. It is impossible to reconstruct 
a 3D profile from RO data because each bending angle is accumulated over a ray 
trajectory in the atmosphere. A sequence of such integrals cannot be inverted into a 
profile in general 3D case, but it can be used as atmospheric soundings in data 
assimilation to numerical weather models. 

 

2.2.3 Spire RO Production Volume 
Due to its quantity of satellites and advanced GNSS-RO receiver technology, Spire has 
been the world’s largest single commercial or government source of RO profiles since 
2019. As shown in Figure 6, the Spire constellation has demonstrated the capability of 
collecting well over 15,000 quality-controlled RO profiles per day over an extended, multi-
year period (mid-2021 to mid-2023). Spire was able to achieve these unprecedented large 
numbers of RO without fully utilizing the capacity of its satellites. The in-orbit capability 
was significantly higher but scaled back to share the constellation resources with other 
payloads to meet the demands from other customer applications. Despite the utilization 
below capacity, the Spire constellation produced over 3 times the amount of RO data 
generated by the next largest source, COSMIC-2, during this period. Furthermore, the 
Spire constellation has collected more RO profiles over the past 5 years than the COSMIC-
1 (2008-2020) and COSMIC-2 (2019-current) constellations have during their orbital 
lifetime thus far. 

Recommendations for RO are collated independently by the International Radio 
Occultation Working Group (IROWG) part of the Coordination Group for Meteorological 
Satellites (CGMS). One of the main recommendations since 2017 (IROWG-6 Report) has 
been “targeting at least 20,000 occultations/day providing good spatial and local time 
coverage” for the operational and research communities of NWP, Climate and Space 
Weather. The Spire constellation has almost single-handedly fulfilled the requirement for 
quantity by collecting over 15,000 profiles per day between late-2021 to mid-2023. 

 

http://www.cgms-info.org/
http://www.cgms-info.org/
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Figure 6 Spire and COSMIC-2 daily volume of quality-controlled RO profiles (monthly-
averaged) between May 2019 and July 2024. COSMIC-2 counts obtained from 

https://gpsmet.umd.edu/gnssro/index.php 

 

Satellites in Spire’s constellation are also situated in a diverse set of orbital planes in low-
earth-orbit, ranging from polar sun-synchronous orbits to mid and low inclination orbits. 
As a result, global coverage from Spire’s RO observations is easily achieved over the span 
of 24 hours. Satellites situated in multiple orbital planes also allows Spire to collect RO 
observations over a large range of local hours, as recommended by the IROWG 
community (Figure 7). In the future, Spire plans to launch satellites into additional local 
time planes to provide more uniform spatial coverage over shorter timespans to 
maximize the impact on NWP and climate applications. 

 

2.2.4 Spire RO Profile Quality 
Formal data evaluations through government pilot programs and peer-reviewed research 
studies have shown that Spire RO data quality exceeds the requirements for NWP 
applications. Spire was one of two vendors that participated in NOAA’s Commercial 
Weather Data Pilot Round 2 program (2018-2019) where it delivered at least 500 RO 
profiles per day over a two-month period. NOAA evaluated Spire’s RO data quality and 
concluded that the data were comparable to other government platforms (Commercial 
Weather Data Pilot Round 2 Summary, 2020). Similarly, Spire RO data were assessed by 
EUMETSAT and the Wegener Centre in an ESA-funded study in 2020 (Quality Assessment 
of Commercial GNSS-RO Data, 2020). EUMETSAT also found that Spire GNSS-RO data in 

https://gpsmet.umd.edu/gnssro/index.php
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the troposphere and stratosphere are comparable in quality to other operational 
missions and recommended the data for comprehensive data assimilation studies. 

 

 

 

Figure 7 Number of RO profiles collected by the Spire constellation over 24 hours (September 
1st, 2022). Top panel shows the number of RO profiles for each 7.5° x 7.5° latitude-longitude 
grid box and bottom panel displays the count for each 7.5° x 30-minute latitude-local time 

grid box. 

 

However, the Spire constellation and its RO capabilities have rapidly progressed since the 
initial data evaluations and more recent peer-reviewed studies have been conducted. 
Most of these studies have concluded that Spire’s RO data are comparable to COSMIC-2, 
which is considered NOAA’s current backbone mission (Ho et al., 2022). By comparing RO 
bending angle profiles derived from the Spire and COSMIC-2 constellations using the 
same data processing system, Ho et al. 2023 concluded that “the precision of Spire 
STRATOS receivers is of the same quality as those of the COSMIC-2 TriG Receiver System”. 
Spire and COSMIC-2 RO datasets have also displayed similar statistics on minimum 
penetration depth, one of the important weather parameters in the lower troposphere 
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(Jing et al, 2023; Ho et al, 2023; Weiss, 2022). One particular study even found Spire 
penetration depth exceeding COSMIC-2 in some regions (Qiu et al., 2023). 

The conclusions from the aforementioned data evaluations and studies contradict 
previous assumptions that large satellites with high receiver signal-to-noise ratio (SNR) 
produce higher-quality RO retrievals than receivers with lower SNR values. The average 
reported COSMIC-2 SNR is approximately 4 times greater in amplitude than the average 
Spire value, which is to be expected due to COSMIC-2's larger antennas and satellite 
platform. Even after accounting for calibration differences that result in an 
overestimation of COSMIC-2 SNR values relative to Spire’s (Gorbunov et al., 2022), 
conventional thought would incorrectly assume that COSMIC-2 RO data possess superior 
signal penetration depth and quality statistics in the lower troposphere where large signal 
variations and fading occur. The numerous independent studies over the past several 
years (see previous paragraph) have proven that this is not the case and receiver SNR is 
not a significant factor in determining RO quality. 

 

Atmospheric data from the Spire weather model has been leveraged in support of the 
FIRE-RES project. Global Navigation Satellite System - radio occultation (GNSS-RO) 
observations have been widely recognised by the Numerical Weather Prediction (NWP) 
community as one of the most impactful meteorological observations, along with 
conventional radiosonde, surface and satellite radiance (microwave and infrared) 
observations. Satellite missions such as Challenging Minisatellite Payload (CHAMP; 
Wickert et al. 2005) and FORMOSAT-3/Constellation Observing System for Meteorology, 
Ionosphere and Climate (FORMOSAT-3/COSMIC, Anthes et al. 2008) were pioneering 
GNSS-RO missions, that demonstrated great benefits for both weather forecasts and 
climate change studies. These benefits come from the global coverage of RO profiles 
which individually exhibit high accuracy, precision, and vertical resolution. In addition, 
GNSS-RO data provide measurements without bias thus helping with calibration of other 
data sources. It was concluded that the RO data were of similar quality as the radiosonde 
data, but with the advantage of global coverage across populated and unpopulated 
regions, such as oceans and the polar regions (e.g., Ho et al., 2020 and references 
therein). As a result, assimilation of GNSS-RO observations has become a standard 
practice in many weather forecasting centres. 

Spire not only assimilates RO data collected by its own satellites, but also ingests data 
from COSMIC-2, MetOp/GRAS, TerraSAR-X, and Tandem-X satellites. Spire assimilates 
between 6,000 and 20,000 bending angle profiles on a typical day, which is higher than 
the amount assimilated from COSMIC-2 at centres like NOAA or ECMWF. 

A typical bending angle profile consists of 200-400 measurements from about 2 km up to 
the upper stratosphere. In the lower troposphere, particularly below 5 km, the signal-to-
noise ratio is lower, leading to higher uncertainty in the RO data. 
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2.3.1 Data Pre-Processing 
Before assimilation, the bending angle measurements need to be converted into 
geophysical parameters (e.g., temperature and pressure) using established retrieval 
algorithms, such as the 1D NCEP Bending Angle Model (NBAM) as outlined by Cucurull et 
al. (2008). This conversion is essential for integrating RO data into Spire’s data assimilation 
system. 

Rigorous quality control measures are implemented to ensure that only reliable and 
accurate data are assimilated. This includes checks for gross errors, consistency with 
other observational data and the physical plausibility of the derived profiles. 

A key enhancement in Spire’s version of the NBAM algorithm is its ability to account for 
vertical error correlations in RO profiles. The strength of these correlations depends on 
the processing algorithm used to convert RO excess phases into bending angle profiles. 
Spire’s algorithm achieves high vertical resolution (200 m) from altitudes below 2 km up 
to 70 km, resulting in stronger vertical error correlations compared to algorithms used by 
other meteorological centres. Analysis shows that Spire RO exhibits stronger error 
correlations below 20 km and stronger anti-correlations in the upper stratosphere, 
calculated using the Desroziers’ method (Desroziers et al., 2005). 

 

2.3.2 Data Assimilation Technique 
Once processed and validated, the ingestion of RO data into the Spire data assimilation 
system is achieved using a hybrid 4DEnVar (Four-Dimensional Ensemble Variational Data 
Assimilation) technique, an advanced data assimilation technique used in numerical 
weather prediction (e.g. Kleist and Ide, 2015). 4DEnVar combines aspects of both 
ensemble-based and variational methods to improve the accuracy of atmospheric 
models. 

Variational Data Assimilation 

Variational methods, such as 4DVar (Four-Dimensional Variational Assimilation), solve an 
optimization problem to find the model state that best fits the observations over a time 
window. They rely on a static background error covariance matrix, which represents 
uncertainties in the initial model state. While effective, traditional 4DVar approaches are 
limited by their assumption of static error structures, which can oversimplify the 
representation of forecast uncertainty. 

Ensemble-Based Data Assimilation 

Ensemble methods, such as Ensemble Kalman Filters (EnKF), use a collection of model 
forecasts (an ensemble) to dynamically estimate error covariances. These methods are 
highly effective in capturing atmospheric flow-dependent uncertainties, providing a more 
accurate representation of the evolving state of the atmosphere. 
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Hybrid Approach in 4DEnVar 

The hybrid 4DEnVar technique merges the variational and the ensemble-based  
approaches by using ensemble-generated background error covariances to augment the 
static covariances in variational methods. This hybridisation allows the assimilation 
system to dynamically adjust to changes in the atmosphere while maintaining the 
computational efficiency of variational approaches. The resulting method retains the 
four-dimensional aspect of variational methods, where observational data is assimilated 
across a time window, but it also benefits from the dynamic, flow-dependent error 
estimates provided by the ensemble. This is particularly valuable in scenarios with high 
observation density, such as the ingestion of Spire's RO data. 

 

The benefits of Spire RO data to NWP have been evaluated internally at Spire and 
externally. The external studies were particularly informative and valuable to Spire, since 
those were performed using different forecast models and data assimilation systems, 
thus providing complementary analysis on the impact of Spire RO data. 

For example, Bowler (2020) focused on the impact of Spire RO data on the UK Met Office 
global NWP system, which employed a hybrid four-dimensional variational (4D-Var) data 
assimilation method. Bowler (2020) examined the impact of Spire RO data by performing 
Observing System Experiments (OSEs). They performed three main experiments over the 
period of three months (8 September 2019 - 8 December 2019): (1) Removing all GNSS-
RO data from the system, then (2) including Spire RO data to the system, and finally (3) 
replacing Spire RO data by the MetOP-C data. The study concluded the following: 
“Assimilating observations from Spire in addition to the current operational network 
brings substantial benefits to forecast performance. These benefits are seen for almost 
all forecast variables and lead times. However, the reductions in the Root Mean Square 
Difference (RMSD) between the forecast and the verifying analysis are much smaller than 
the detriments seen from removing all operational GNSS-RO observations, despite this 
being a smaller number of observations. Removing data from Metop-C and replacing it 
with an equivalent number of observations from Spire leaves the system approximately 
unchanged. Therefore, we conclude that the two data sources are of similar quality.” 

The Bowler (2020) study also quantified the overall impact of all assimilated GNSS-RO 
data on reducing the forecast Root Mean Square Error (RMSE) with respect to the verifying 
ECMWF analysis, as well as verifying observations, and concluded that there is a 
logarithmic dependence between the number of occultations (Noccs) per day and the 
percentage or RMSE reduction (Figure 8). The greatest error reduction (1.21 %) was 
obtained when the maximum number of RO profiles (7,000 RO profiles) were assimilated 
per day. The forecasts were initialized twice per day (at 00z and 12z) and verified against 
the ECMWF analyses (black line). 
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Figure 8 Average forecast RMSE reduction (%) as a function of the logarithm of the number of 
occultations (Noccs) per day. Note that, for the maximum number of GNSS-RO profiles 

assimilated (7,000 Noccs per day), the forecast error reduction, measured with respect to the 
European Centre for Medium-Range Weather Forecasts (ECMWF) analysis (black line), was 

estimated to be 1.21 %. Also note that the forecast error reductions with respect to the 
observations follow similar logarithmic dependence (red line), but are typically smaller, 

however the observations are sampling the globe in a less uniform way than the ECMWF 
analyses (Figure taken from Bowler 2020) 

 

Note that assimilation of 7,000 RO profiles is far from the expected saturation of RO 
benefits (e.g., Harnisch et al. 2013). Harnisch et al. (2013) examined the potential impact 
of synthetic RO profiles as a function of the number of those profiles. They determined 
that, although the magnitude of positive impact gradually decreases as the number of RO 
profiles increases, there is no saturation of the benefit up to at least 128,000 RO profiles 
per day. 

An alternative way to measure the impact of assimilated observations on the forecast 
improvement, and less computationally expensive than OSEs, is evaluating a metric called 
Forecast Sensitivity to Observation Impact (FSOI, Langland and Baker, 2004, Cardinali 
2009). A study performed at the ECMWF (Healy 2020) belongs in the category of the FSOI-
type studies. They also found significant benefits of Spire RO data, as well as COSMIC-2 
data, especially during the period in 2020 when the amount of assimilated aircraft data 
was significantly reduced due to COVID flights restrictions. Results from Healy (2020) are 
shown in Figure 9. It can be seen that there is an increase in FSOI for GNSS-RO data 
(denoted GPSRO, orange line in the figure) at the time when COSMIC-2 was introduced, 
then additional increase when Spire RO was included and finally a decrease when Spire 
RO was removed. It is also evident that GPSRO data is among the five most impactful 
observations, together with microwave water vapor (MWWV) radiance, microwave 
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temperature (MWT) radiance, infrared temperature (IRT) radiance and infrared water 
vapor (IRWV) radiance data. 

 

Figure 9 The operational Forecast Sensitivity to Observation Impact (FSOI, Cardinali 2009) 
timeseries, calculated as relative FSOI % for 24 h forecasts. The GNSS-RO (called GPSRO in 
figure) contribution is the orange line. COSMIC-2 was assimilated on 25 March 2020 and 
Spire on 13 May 2020. Spire RO was assimilated until 30 September 2020. Note the red 

circles indicating an increase in GPSRO FSOI (orange line) at the time when COSMIC-2 was 
introduced, then additional increase when Spire RO was included and finally a decrease 

when Spire RO was removed (Figure taken from Healy 2020) 

 

The data assimilation system, described in section 2.3.2 Data Assimilation Technique, is 
used to define the initial conditions for the Spire global forecast model. Spire leverages 
the community-based Unified Forecast System (UFS) with Finite-Volume Cubed-Sphere 
(FV3) dynamical core (Harris and Lin 2013). Version 15 of this model (UFS-FV3.v15) is 
implemented into Spire operations, which is called ‘SOFD’ (an acronym for Spire 
Operational Forecast - Deterministic). 

The SOFD model is run at 13 km horizontal grid-spacing and has 64 layers in vertical with 
model top at ~ 54 km. The data is outputted on a cylindrical 0.125 lat/lon grid. The SOFD 
model runs four times per day. The model issuances at 00UTC and 12UTC are long runs 
and produce forecasts up to 15 days into the future. The model issuances at 06UTC and 
18UTC are shorter runs and produce forecasts out to 24 hours into the future. 
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The SOFD forecast data is available through the Spire Weather API through either point 
requests or file request. A point request returns forecast data (in JSON format) for a 
geographical location specified by a latitude-longitude combination. The file request 
returns gridded data (in GRIB format) for predefined regions. 

In the scope of this project, output data of Spire’s SOFD model is accessible as 
visualisation layers through the Integrative Software System (ISS). More information on 
the ISS and Spire’s weather data can be found in the deliverable D5.2 IA5.1 brief: Integrative 
umbrella system for EWE decision-making. 
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The methodologies developed in this section correspond to the work carried out in 
Innovative Action (IA) 5.3 over Catalonia’s Living Lab (CAT), with the main objective of 
developing new methodologies based on remote sensing datasets to monitor the 
evolution of key forestland metrics and phenological parameters and to integrate the 
generated data in an web-based platform in order to facilitate their accessibility and 
distribution.  

This IA 5.3 stems from the Subtask 5.2.1 Advanced vegetation characterization based on 
Earth Observation (EO) data fusion and Artificial Intelligence (AI) over forestland ecosystems. 
Data fusion of optical EO, multi and hyperspectral datasets and LIDAR data under AI 
approaches to map forestland fuel conditions, derived water content parameters, 
changes and tendencies, monitor post-fire scenarios regarding vegetation recovery 
coupling EO data with ecological and socioeconomic factors on agile decision making 
geoservice tools. 

 

Within the framework of advanced vegetation characterization based on Earth 
observation data, the first methodologies are primarily focused on estimating the CO2 
emissions resulting from wildfires. To achieve this, wildfire severity is first assessed using 
the differenced Normalized Burn Ratio (dNBR) (Key & Benson, 2006), a widely recognized 
index for detecting and measuring the impact of fire on vegetation. The dNBR allows for 
a clear evaluation of burn severity, which is essential for understanding the scale of 
biomass loss and subsequent carbon emissions (Wiedinmyer et al., 2006). Following this, 
an estimation of biomass loss in tons is carried out, taking into account not only the 
volume but also the specific types of forest cover affected. This distinction is crucial 
because different forest types have varying biomass densities and carbon storage 
capacities, which directly influence the amount of CO2 released into the atmosphere. 

In parallel, the methodologies also include an in-depth analysis of multi-temporal remote 
sensing data. Specifically, a time series analysis of Sentinel-2 imagery over the 2015-2024 
period is conducted, focusing on the extraction of various vegetation indices. These 
indices, such as NDVI (Normalized Difference Vegetation Index) and VGI (Vegetation 
Growth Index), provide critical insights into vegetation health, phenological changes and 
post-fire recovery dynamics. The long-term monitoring enabled by this time series 
approach is invaluable for tracking gradual changes in forestland and identifying patterns 
of recovery or degradation over time. 

Moreover, these time series datasets, derived from Sentinel-2 images, are intended to be 
further exploited using advanced artificial intelligence (AI) models. By applying AI and 
machine learning techniques, the aim is to uncover hidden trends and predict future 
forestland dynamics with greater accuracy. The combination of remote sensing data and 
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AI allows for the development of predictive models that can assess not only past and 
present vegetation conditions but also forecast future changes, thus offering a powerful 
tool for forest management, wildfire risk assessment and climate change mitigation. 

In summary, the methodologies developed encompass a comprehensive approach to 
wildfire impact assessment and long-term forest monitoring. By integrating remote 
sensing data, biomass estimation, and AI-driven analysis, the project aims to enhance our 
understanding of forest ecosystem dynamics, improve our ability to measure and 
mitigate CO2 emissions from wildfires, as well as contribute to more effective forest 
management strategies in the face of climate change. 

The methodologies described were developed using various wildfires in the Catalonia 
Living Lab as tests. The wildfires selected had to be after June 2015 (Sentinel-2 mission 
service start) with a variety of burnt areas size, bioclimate regions and land cover. Figure 
10 shows the localization of the selected wildfires. 

 

 

Figure 10 Map of Catalonia LL with the localization of the studied wildfires 
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1. Llançà fire (16-07-2021) burned approximately 415 hectares in the Cap de Creus 
Natural Park, a Mediterranean Northern coastal region under strong winds and 
dry conditions. The affected area was mostly covered with maquis shrubland and 
dispersed small pines. 
 

2. Martorell fire (13-07-2021) is considered a smaller fire compared to the others, 
with an estimated range of 200 hectares burned, but it is important to highlight its 
proximity to big urban areas. It was located in the Baix Llobregat area, sharing the 
typical Mediterranean climate with pine forests and shrub zones. 
 

3. Òdena fire (26-07-2015) approximately had 1,300 hectares burnt. It is in the central 
inland part of Catalonia, where the Mediterranean climate has some continental 
characteristics with wider temperature variations and less coastal influence. The 
main vegetation affected was mostly dense pine forests.  
 

4. Santa Coloma de Queralt fire (24-07-2021) had over 1,700 hectares burnt. Also 
located in the central inland of Catalonia, in a predominantly rural environment 
with mixed agricultural and forested areas typical of the Mediterranean climate, 
where dry summers make the region prone to wildfires. 
 

5. La Torre de l'Espanyol fire (26-06-2019) burned around 6,000 hectares being one 
of the biggest wildfires in Catalonia in recent years. Located in the Ribera d’Ebre 
region, this area is known for its Mediterranean climate with hot and dry summers, 
which contributed to the fire’s rapid spread. 

 

3.2.1 Severity 
The severity of a burned area refers to the accumulated effect on the ecological 
communities that make up the landscape after the fire. This includes both physical and 
chemical changes in the soil. The scope covers all degrees of impact, culminating in the 
most extreme case, where essentially all organisms are eliminated, and the community 
must regenerate from scratch. Severity makes sense as long as it is understood to refer 
to the conditions left behind after the fire. 

Using remote sensing methods, the severity can be estimated with the Normalized Burn 
Ratio (NBR) index. The use of this index is justified by the fact that reflectivity in the Near 
Infrared (NIR) band responds positively to vegetation cover and wet areas, while the 
Short-Wave Infrared (SWIR) band responds to dry land and non-productive surfaces. The 
combination of these bands using the equations shown below will indicate where 
changes in vegetation cover have occurred and the magnitude of these changes. 
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The NBR is, therefore, a normalized index with a range from -1 to 1. When applied to 
different satellites, the bands used will be bands 4 and 7 for the TM and ETM+ sensors of 
Landsat 5 and Landsat 7, and bands 5 and 7 for Landsat 8 (OLI+TIRS), while for Sentinel 
2, the bands used will be 8 and 12. This index provides the best contrast between healthy 
photosynthetic vegetation and burned vegetation.  

 

NBR = (NIR – SWIR) / (NIR + SWIR) 
 

The final index that we will use is a differential of the NBR (called delta NBR, dNBR), which 
is the difference between the NBR value from the image closest to the fire's start date 
(NBRpre) and the image available closest to the fire's end date (NBRpost). In the severity 
maps where the dNBR is applied, broad categories are shown in Table 2: 
 

dNBR = NBRpre – NBRpost 
 

Table 2 Severity level equivalences 

Severity Level dNBR value 
Unburned < 0.1 
Low 0.1 - 0.27 
Moderate 0.27 - 0.44 
High 0.44 - 0.66 
Very High >= 0.66 

 

In the Figure 11 can be appreciated the NBR maps before and after the wildfire of the 26th 
July 2015 in Òdena, and then,  Figure 12 illustrates the results of the classified dNBR for 
the same wildfire. The dNBR is calculated using the 16 July 2015 image as the closest 
cloudless Sentinel-2 pre-fire image and the image of the 2 August 2015 as post-fire. 
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Figure 11 NBR Indexes before (left) and after (right) of the Òdena's wildfire 

 

 

 

 

Figure 12 Classified dNBR of Òdena's wildfire, 2015 

 

16–07-2015  02–08-2015  
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3.2.2 Biomass Consumption 
Greater severity leads to greater biomass consumption and a larger loss of the forest 
system. Losses are estimated through the relationship established in previous studies 
between severity, explained by the dNBR index and the percentage of biomass consumed 
for each type of vegetation. Therefore, by knowing the severity and the pre-existing 
biomass, it is possible to estimate biomass losses (De Santis et al., 2010). The proposal by 
De Santis et al., 2010 is based on a study and subsequent publication where consumption 
factors for Mediterranean climate areas in a California forest were proposed. We consider 
these factors to be the most appropriate to apply to our latitudes, given the few published 
factors available. 

By reclassifying severity into intensity (Table 2) according to the work of Key and Benson 
2006, we can relate it to biomass consumption values based on severity levels and 
vegetation types (Table 3). By multiplying the pre-existing biomass by the factor attributed 
pixel by pixel and then summing all the pixels, we obtain the total biomass consumed in 
tons. 

 

Table 3 Table of coefficients of Biomass Consumption per severity level and type 

Severity Level 
Consumed Biomass 
Coniferous Broad-leaved Shrubs 

Low 0,25 0,25 0,71 

Moderate 0,47 0,4 0,84 

High 0,56 0,48 0,89 

Very High 0,65 0,56 0,95 

 

To obtain the vegetation type, in the case of CAT Living Lab, there is a precise, detailed 
and updated land cover map (Mapa de Cobertes del Sòl de Catalunya) produced by the 
ICGC, which offers 12 distinct vegetation types, that need to be grouped in the 3 
categories (Coniferous, Broad-leaved or Shrubs). Otherwise, products like the Corine 
Land Cover or the European Space Agency (ESA) World Cover can be exploited to obtain 
a vegetation classification. 

 

Once the Coefficient of Consumed Biomass is assessed, the pre-existing biomass (in tons) 
must be determined to calculate emitted CO₂. For the case of Catalonia LL, the Forestry 
Biophysics Variables Map (ICGC, CREAF) is used to estimate biomass. As shown in Figure 
13, the Biophysics Variables Map provides biomass density data with a 20 x 20 metres 
spatial resolution. To obtain the absolute mass per pixel, we multiply the density by the 
pixel area, expressed in hectares. 
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Figure 13 Forest biomass density of the Forestry Biophysics Variables Map (ICGC, CREAF) with 
Òdena’s wildfire marked as a black line 

As established in the work of Wiedinmyer et al. (2006), each type of gas released during 
the combustion of trees and shrubs has a specific Emission Factor (EF). For instance, 
burning 1 ton of wood, combined with oxygen, generates approximately 1.58 tons of CO₂. 
The EF is expressed as mass emitted per mass consumed, typically in kg/Mg. 

To calculate the emitted CO₂, we can apply the formula described by Wiedinmyer et al. 
(2006) combining the pre-existing biomass, the consumed coefficient and the emission 
factor: 

CO2 Emissions = B * CB * EF (CO2) 

Where: 

 B = Pre-existent Biomass (tons). 

 CB = Consumes Biomass (0 to 1 coefficient). 

 EF = Emission Factor (kg/Mg of gas per consumed ton). 
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Figure 14 presents the results from the formula, displayed on a map. Additionally, Table 
4,   
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Table 5 and Table 6 summarize the biomass burned, by type (coniferous, broad-leaved 
and shrubs, respectively), and the CO₂ emitted. This analysis covers the five wildfires 
defined in Figure 10 and all information is accessible via Technosylva’s ISS platform 
(https://iss.fire-res.com). 

 

Figure 14 CO2 emissions map for Òdena’s wildfire. Background: 2015 Catalunya’s flight 
orthophoto (ICGC) 

 

Table 4 Summary table of coniferous type in Òdena’s wildfire analysis. 

Severity Level Burned 
Surface (ha) 

Burned Biomass 
(t) 

CO2 Emissions (t) 

Low 28,80 247,78 341,20 
Moderate 74,60 1203,59 1657,34 
High 172,44 2973,77 4094,88 
Very High 331,92 5913,65 8143,09 
TOTAL 607,76 10338,79 14236,51 
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Table 5 Summary table of broad-leaved type in Òdena’s wildfire analysis. 

Severity Level Burned Surface (ha) Burned Biomass (t) CO2 Emissions (t) 
Low 0,68 9,62 13,24 

Moderate 0,68 12,05 16,59 

High 1,24 30,88 42,52 

Very High 4,84 119,96 165,19 

TOTAL 7,44 172,50 237,54 
 

Table 6 Summary table of shrubs type in Òdena’s wildfire analysis 

Severity Level Burned Surface (ha) Burned Biomass (t) CO2 Emissions (t) 
Low 11,76 68,62 94,49 

Moderate 28,92 196,50 270,57 

High 55,04 402,31 553,98 

Very High 36,60 279,54 384,92 

TOTAL 132,32 946,96 1303,96 
 

In parallel to characterizing vegetation at the moment of the wildfire, a nearly decade-
long analysis of Sentinel-2 images from 2015 to 2024 was conducted to explore the 
broader temporal dynamics of affected landscapes, mostly using representatives’ 
vegetation indexes such as NDVI and VGI. This time-series approach aids in 
understanding how prior vegetation conditions, such as seasonal growth patterns or 
drought-induced stress, contribute to wildfire severity while also revealing recovery 
patterns after the event. By utilizing AI to process and interpret these indices, we can 
detect nuanced shifts in vegetation health and resilience, ultimately informing predictive 
models that assess future wildfire risk based on historical trends and current ecosystem 
vulnerabilities. 

 

3.4.1 Indices Time-Series  
By combining the revisit times of both Sentinel-2A (since 2015) and Sentinel-2B (since 
2017) satellites, we achieve a temporal resolution of approximately 5 days, allowing for 
around 70 potential images per year for each study area. However, cloud cover limits 
usable data, requiring us to filter out images with significant cloud presence. For each of 
the five wildfire’s study areas, we processed over 600 images but ultimately utilized 
between 200 and 250 cloud-free images, depending on cloud frequency and location. For 
instance, in the case of the Torre de l’Espanyol wildfire, we analysed a total of 217 
cloudless Sentinel-2 images. This specific wildfire will serve as an example throughout our 
analysis to illustrate the methodologies applied and demonstrate possible outcomes. 
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As mentioned, in the analysis of the wildfire of Torre de l’Espanyol, 217 images were used. 
The following Table 7 shows its distribution for every year. Figure 15 and Figure 16 work 
as summaries showing one image per year (during summer) for NDVI and VGI indexes, 
respectively. 

 

Table 7 Cloudless Sentinel-2 images per year used in the analysis. Starting at 23/06/2015 up 
to 28/06/2024 

Year 2015* 2016 2017 2018 2019 2020 2021 2022 2023 2024* TOTAL 

Nº S2 Images 3 13 33 28 30 24 24 21 28 13 217 

*Incomplete years                     

 

The NDVI represents the vegetation vigour, providing insight into the overall health and 
density of plant cover, while the VGI represents the growth of the vegetation (A. Tardà, 
2022), serving as an indicator of the rate of vegetation increase over time. This dual 
approach allows us to capture both the vitality of the vegetation and its growth dynamics, 
which are critical for understanding ecosystem responses before and after wildfire 
events. 

In both time series, the impact of the June 2019 wildfire event is clearly visible, marked by 
a sharp drop in index values immediately following the event. At a deeper level, however, 
we can observe a gradual recovery within the affected zone, reflected by a yearly increase 
in the index values, indicating slow but steady regrowth. Meanwhile, the surrounding 
areas show a slight decline in these values, attributed to a prolonged three-year drought 
that has impacted vegetation health beyond the burned area. This contrast highlights the 
combined effects of wildfire recovery and drought stress on vegetation dynamics in the 
region. 

 

Figure 15 Evolution of NDVI. 1 image per year of Torre de l’Espanyol wildfire 
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Figure 16 Evolution of VGI. 1 image per year of Torre de l’Espanyol wildfire 

 

3.4.2 AI Model Development 
The information that comes out of the multilevel analyses of the 10-year time series is 
the key to develop a model based solely on worldwide free access Sentinel-2 images and 
historic weather data. At this moment, the Multilayer Perceptron (MLP) deep learning 
model is being developed using the following weighted inputs: 

o Burned area indexes time-series values.  
o Control zones indexes time-series values. 
o Trend difference between burned and control zones. 
o Daily precipitation data. 
o Daily temperature data. 
o Daily humidity data. 

To capture the unaltered dynamics of the forest ecosystem, we use two weighted control 
zones for comparison. As shown in Figure 17, the first control zone is a 1-kilometre buffer 
around the burned area, while the second is a 5-kilometre buffer around the first. Using 
two control zones instead of a single large one allows us to assign greater weight to 
vegetation closer to the burned area, as it is more ecologically similar. However, to 
mitigate the potential influence of outliers (which could skew results significantly in the 
immediate vicinity) the second larger buffer zone helps to balance the data. This 
approach provides a more accurate baseline for evaluating recovery trends and broader 
forest dynamics. 
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Figure 17 Schema of control zones 1 and 2 for the Torre de l’Espanyol wildfire. Background: 
Sentinel-2 RGB composition (Red: SWIR, Green: NIR and Blue: Red band) 

As shown in the graphs (Figure 18 and Figure 19), the index time-series in a 
Mediterranean climate exhibits a clear seasonal pattern, with vegetation vigour and 
growth rates peaking in winter and reaching their lowest points in summer. In these 
graphics, three lines represent the behaviour of different areas: the burned zones (in 
blue), control zone 1 (in orange), and control zone 2 (in green). Similar to Figure 15 and 
Figure 16, the wildfire event’s impact is distinctly visible. However, other patterns, such 
as the persistent drought (2021-2024), also emerge; this is evident in the control zones, 
where a downward linear trend indicates the ongoing effects of drought stress on 
vegetation outside the burned area. 

 

Figure 18 NDVI evolution from 2015 to 2024. Dashed lines represent 30th June of each year 
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Figure 19 VGI evolution from 2015 to 2024. Dashed lines represent 30th June of each year 

 To assess the recovery of the burned area compared to the control zones, we analyse 
the difference in their time series. Initially, in the years directly following the wildfire, the 
burned area shows minimal response in these indices, reflecting the significant impact of 
the fire. However, after 3-4 years, the dynamics of the burned area increasingly resemble 
those of the control zones, with seasonal effects and trends aligning more closely. This 
convergence can be quantified by analysing the slope of the difference between the 
burned area and control zones (marked in red in the Figure 20). When the derivative of 
this difference function approaches zero, it indicates that the patterns are nearly 
identical, varying primarily in scale and absolute values.  

 

Figure 20 NDVI evolution with the representation of the difference between burned areas and 
control zone 1 

 

Figure 21 Weather data of monthly aggregated precipitation (blue) and average temperature 
(red) in the Torre de l’Espanyol region 
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Finally, to further refine the characterization of the forest masses, we incorporate 
weather data as additional inputs. After conducting a correlation analysis, we identified 
temperature, precipitation and humidity as the most representative variables for 
influencing vegetation dynamics. The graph in Figure 21 illustrates two of these variables 
and it helped confirm the inferences drawn from the index time-series analysis, 
particularly regarding the drought. Notably, the weather data reveals a significant dry 
period from 2021 to 2024, which is consistent with the downward trend observed in the 
control zones and reinforces the impact of the prolonged drought on vegetation growth. 

 

In the motive of making the data accessible and exploitable one of the compromises of 
this Innovative Action is to aggregate all the analysed data in a Geo-Service. Technosylva, 
partners and coordinators of WP5 have developed a platform called Integrative Software 
System (ISS) to visualize and interact with the data generated in various IAs. In the case 
of the IA 5.3, the module allows for the visualization of the different indexes per each 
analysed wildfire and has a slider bar to change the date of the data, as shown in Figure 
22. 

 

Figure 22 Screenshot of ISS platform showing the 6th November 2021 NDVI within the Torre 
de l’Espanyol fire, the dropdown menu at the right and the date slider bar at the bottom 

 

Other capabilities of the module are the precise time-series generator, which originates 
the time-series of the desired area for all the indexes (Figure 23). And finally, detailed 
tables with the CO2 emissions and the burned biomass for each wildfire (Figure 24). 
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Figure 23 Screenshot of ISS time-series generator capabilities. The area is drawn in the map 
and the desired time-series graph appears on the left of the screen 

 

 

Figure 24 Screenshot of ISS with the information of the CO2 emissions and burned biomass 
per wildfire 
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Technology Readiness Levels (TRL) are a standardized scale used to assess the maturity 
of a particular technology during its development and deployment (European 
Commission, 2014). The scale ranges from TRL1 (basic principles observed) to TRL9 
(actual system proven in operational environment). The following definitions apply: 
 
TRL 1 – basic principles observed 
TRL 2 – technology concept formulated 
TRL 3 – experimental proof of concept 
TRL 4 – technology validated in lab 
TRL 5 – technology validated in relevant environment  
TRL 6 – technology demonstrated in relevant environment 
TRL 7 – system prototype demonstration in operational environment 
TRL 8 – system complete and qualified 
TRL 9 – actual system proven in operational environment 
 
This section will assess the Technical Readiness Levels that are achieved in relation to the 
main results of this deliverable. 
 

The development work described in Part 1 of this report focuses on leveraging satellite-
based Radio Occultation data for atmospheric profiling and its integration into Numerical 
Weather Prediction models to enhance wildfire resilience. 

Based on the activities detailed in this report, a fully operational and qualified system for 
leveraging Radio Occultation technology, Data Assimilation, and Numerical Weather 
Prediction (NWP) systems to enhance extreme wildfire resilience is in place. Hence, the 
technology can be assessed at TRL 8. The system provides accurate, real-time 
atmospheric insights critical for assessing wildfire risks. Achieving TRL 8 signifies that the 
technology has been thoroughly tested, validated, and proven effective. This level of 
maturity is vital because it ensures that the technology can reliably support decision-
making processes in real-world applications, enabling proactive fire management and 
more effective resource allocation during extreme wildfire events. 

 

The work conducted in the IA 5.3 began at Technology Readiness Level (TRL) 6, involving 
the development of methodologies that were applied to real-world wildfire scenarios. 
These methodologies, integrating various types of Earth observation data and Artificial 
Intelligence, have been successfully implemented via an API into the ISS software, a web-
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based geo platform developed by Technosylva. This successful integration allows for the 
visualisation, consultation, and downloading of the analysed data. As a result, the project 
will advance to TRL 8, signifying that the system is now complete and qualified. 
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Part 1 of this report highlights the significant advancements achieved by leveraging 
Spire’s satellite-based Radio Occultation (RO) technology to enhance atmospheric 
profiling and improve Numerical Weather Prediction models.  

Spire’s constellation of nanosatellites collects unbiased and globally distributed RO 
profiles with high vertical resolution, offering a valuable dataset for refining forecast 
accuracy in wildfire-prone regions. By utilizing a hybrid 4DEnVar assimilation technique, 
Spire has successfully integrated RO data into its global forecast models, providing 
actionable insights into critical atmospheric variables such as temperature, humidity, and 
wind patterns. These improvements enhance the ability to predict wildfire risks, enabling 
more proactive and efficient fire management strategies. 

The results demonstrate that Spire’s RO data and forecasting systems have reached 
Technology Readiness Level (TRL) 8, signifying a complete and qualified system ready for 
operational deployment. By providing accurate, real-time atmospheric data, a significant 
step toward building a more resilient wildfire management system across Europe has 
been taken. Moving forward, the continued operational use and refinement of this 
technology will further enhance its capacity to support decision-makers in preventing and 
combating wildfires. 

As final remarks for part 2, successfully estimating CO2 emissions released in wildfires 
using only free-access Earth observation (EO) data can be crucial for initial assessments 
of wildfire impacts and comprehensive wildfire analyses. This method allows for prompt 
estimations of emissions across the entire affected area, providing timely information 
while on-ground analyses are being conducted or when they cannot be performed. 

One of the strengths of this approach is its worldwide applicability. However, the current 
methodologies do have some limitations. To deploy this analysis for any wildfire globally, 
it is essential to identify EO sources equivalent to those used in this study and to adapt 
the coefficients in the methodologies as necessary. 

Additionally, incorporating Artificial Intelligence can produce novel approaches to post-
fire forest recovery assessments by analysing large and diverse data sources more 
efficiently, leading to better characterisation and modelling of recovery processes. This 
will enhance the analysis capabilities and the understanding of the factors that intervene 
in these processes, from an EO standpoint. 

Finally, the integration of platforms like Technosylva’s ISS is transforming the way we 
approach and understand complex challenges. By seamlessly aggregating diverse 
datasets and delivering rapid, reliable access to critical information, this technology 
addresses a growing demand among private and public stakeholders. Its ability to 
streamline decision-making and enhance situational awareness makes it an 
indispensable tool for driving smarter, more effective solutions. 
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