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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• In 2022, 18 PurpleAir monitors tracked 
wildfire smoke's impact on PM2.5 in 
Galicia. 

• PM2.5 data tested QEOFs from PMF to 
analyze wildfire smoke's spatial impact. 

• 8 factors representing spatial patterns of 
air pollutants were identified. 

• 19 wildfires were linked to peak PM2.5 
concentrations (>300 μg/m3; 1-h 
mean). 

• Results identified PM2.5 sourcing from 
wildfires.  
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A B S T R A C T   

Galicia (NW Spain) is one of the most fire-prone regions in Southern Europe. In the summer of 2022, a total of 
thirteen wildfires each exceeding 500 ha were reported in this area, with ten of these large fires occurring in the 
Ourense region. To study the impacts of wildfire smoke plumes on ambient air PM2.5 concentrations, a network 
of 18 PurpleAir monitors was deployed across the Galicia region during July and August 2022. The PM2.5 
concentration data were then used as input to test the applicability of quasi-empirical orthogonal functions 
(QEOFs obtained with Positive Matrix Factorization (PMF)) to characterize the spatial variability of wildfire 
smoke impacts on air quality. HYSPLIT back-trajectory analysis and Concentration-Weighted Trajectory (CWT) 
models were implemented, and the results from these tools were combined with source contributions. As a result, 
19 wildfires were identified and linked with peak ambient PM2.5 concentrations (>300 μg/m3 of PM2.5; 1-h 
mean). Specifically, the Folgoso do Courel fire emerged as a significant contributor to these high concentra
tions and played an important role in influencing a significant number of the identified factors. Moreover, the 
results also suggested that emissions from fires in Portugal reached the study area, contributing additional im
pacts on air quality. These results demonstrated that this approach was useful in identifying the emission source 
areas contributing to observed PM2.5 concentrations during wildfire events. The PM2.5 concentration maps 
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resulting from the CWT analysis were also valuable in understanding the short- and long-term exposures to PM2.5 
from wildfire smoke.   

1. Introduction 

The severity of wildfires is increasing, presenting significant envi
ronmental, economic, and social threats (Jones et al., 2022). The 
concept of extreme wildfire events (EWE) has emerged to identify those 
events with high fire intensity and rapid rates of spread (Duane et al., 
2021). In 2022, the South American wildfire season had the highest 
estimated emissions in the last 20 years, according to the Copernicus 
Atmosphere Monitoring Service (CAMS). France and Spain were among 
the most affected European countries, with the highest emissions of 
wildfire smoke from June to August over the last two decades. Wildfires 
emit a combination of gaseous compounds, including carbon monoxide 
(CO), nitrogen oxides (NOx), non-methane organic compounds (NMOC), 
and particulate matter (PM) into the atmosphere. However, emissions 
are highly variable due to differences in fuel, burning conditions, and 
other environmental factors (Reisen et al., 2015). 

Specifically, fine particulate matter (diameter < 2.5 μm; PM2.5) 
generated by wildfires, among other sources, represents a global envi
ronmental and public health concern (Burke et al., 2023; Keywood et al., 
2015; Kramer et al., 2023). Exposure to wildfire PM2.5 has been asso
ciated with adverse health effects, including reduced lung function, 
exacerbation of chronic lung diseases, cardiovascular complications, 
neurological effects, and increased mortality (Grant and Runkle, 2022; 
McClure and Jaffe, 2018). Globally, approximately 340,000 annual 
deaths can be linked to smoke from landscape fires (Johnston et al., 
2012). 

Actions to mitigate wildfire smoke impacts on public health are 
contingent on quantifying the actual air pollutant concentrations, which 
are typically monitored by EU-reference stations. However, isolating 
PM2.5 contributions from wildfire remains unclear (Burke et al., 2023), 
with few studies comparing health impacts of wildfire-derived air 
pollution to urban PM (Reisen et al., 2015; Dennekamp et al., 2015; 
Naeher et al., 2007). Some exposures are sporadic, short-lived, and 
unpredictable (Henderson et al., 2011; Reisen et al., 2015) and more
over, rural areas experiencing frequent wildfires often lack regulatory 
monitors, leading to sparse coverage of official reference data. Low-cost 
air monitors offer improved PM2.5 measurement resolution (Kramer 
et al., 2023), but attributing emission sources, especially wildfires, is 
essential for understanding and reducing exposure misclassification (Liu 
et al., 2015). 

In aerosol research, receptor modeling by Positive Matrix Factor
ization (PMF) is widely used for source attribution (Hopke et al., 2020), 
which has also been linked with back-trajectory analysis (Zhou et al., 
2004). Prior studies (Kim and Hopke, 2005; Zhang et al., 2020) have 
used the representation of air masses to identify the origin of pollutants 
reaching a given receptor. Once the back trajectories are obtained, the 
CWT (Concentration Weighted Trajectory; Hsu et al., 2003) method has 
been widely used to identify emission source areas (Zhang et al., 2019). 
PMF can be considered as an alternative approach to implementing EOF 
analysis, particularly when applied to source apportionment tasks since 
it provides quantitative results. Typical EOF analyses are eigenvector 
based with mean-centering and normalization using standard deviations 
that is actually an unweighted least-squares fit in a standardized space. 
Given that the desired endpoints in our work are quantitative assess
ments of the wildfire impacts, PMF provides them through an explicit 
weighted least-squares formalism. Empirical Orthogonal Function (EOF) 
analysis is frequently used in atmospheric science to decompose a space- 
time field into spatial patterns (Hannachi et al., 2007) and describe their 
temporal variability. EOFs extract qualitative information from tempo
ral and spatial data by calculating orthogonal vectors of linear combi
nations of the original variables. They present the maximum variance 

contained in the original data (Wilks, 2005). While EOFs are tradition
ally used for climate and meteorological studies, they may also be used 
to explore spatial patterns or dominant modes of variability in an air 
quality dataset with multiple pollutant sources (Henry, 1997a, 1997b, 
1997c; Chueinta et al., 2004). 

Using this conceptual framework, the uniqueness of this study lies in 
the utilization of PMF-derived quasi empirical-orthogonal functions 
(QEOFs) to apportion the spatial distribution of air pollutants. Although 
the methodologies employed (PMF, EOF, CWT, back trajectories) have 
been widely documented and independently employed in various 
studies, this research represents the first instance of their integration and 
application in wildfire research. Our objective was to identify and 
quantify wildfire smoke contributions to observed PM2.5 concentrations 
monitored by a network of low-cost PurpleAir monitors during the 
summer of 2022 in Galicia. If successful, the proposed methodology has 
the potential to provide improved accuracy of exposure categorization 
(Alman et al., 2016) and thus improve the links between PM2.5 expo
sures and adverse health outcomes due to wildfires in epidemiological 
studies (Cascio, 2018; Stowell et al., 2019). 

2. Methodology 

2.1. Study area 

The study area covered the Galicia region (lat. 42◦ 45′N, long. 7◦

41′W) (Fig. S1), located in the northwest (NW) of the Iberian Peninsula. 
It is one of the regions in Europe with the highest activity of forest fires 
and, consequently, the most affected by the emissions from this source 
(Alonso-Betanzos et al., 2003). Historically, a number of extreme wild
fires have affected Northern Portugal and Northwestern Spain. The 2017 
Iberian wildfires were some of the most severe wildfires and had a sig
nificant impact on the region, resulting in human deaths and major 
economic damage (Chas-Amil et al., 2020). According to the European 
Forest Fire Information System (EFFIS) (Joint Research Centre, 2023), 
these wildfires burned an area of about 700,000 ha in total. Another 
exceptional wildfire season was in Summer 2022 in Spain, where the 
number of observed fires and the extent of burned area were higher than 
the average of 2006–2021 (Joint Research Centre, 2023). 

Specifically, in Galicia, 50,000 ha were burnt during this period. 
There are three key factors that make Galicia a fire-prone region. First, 
the regional climate promotes the accumulation of shrub biomass and 
consequently, the buildup of flammable forest fuels (Aranha et al., 2020; 
Fernández-Alonso et al., 2022). As a result, the region exhibits a notable 
amount of available fuel leading to more intense, rapid combustion 
when ignited. Furthermore, the flora in Galicia is dominated by Euca
lyptus plantations, which are linked to an elevated fire risk (Shakesby 
and Doerr, 2006; Taylor et al., 2017; Cordero, 2017). The third factor 
relates to unauthorized fire-setting activities for land management 
purposes, conducted without prior permissions from the administration. 
Given these characteristics, coupled with its notable historical fire 
incidence, Galicia emerged as a favorable study area from which find
ings may be extrapolated to analogous fire-prone regions. 

2.2. Identification of NW Iberian Peninsula wildfires in summer 2022 

Thirteen wildfires with >500 ha in area were reported in Galicia 
during the summer of 2022. Table 1 presents the seven largest wildfires 
analyzed in this study, and Table S1 (in Supporting Information) pro
vides a full list of the investigated wildfires. The largest of these was the 
Folgoso do Courel fire (referred to in this work as WF_1), which burned 
13,612 ha. Ten other large fires occurred in the Ourense region. The 
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most significant of these was the Carballeda de Valdeorras fire (WF_2), 
which started on 15/07/22 and consumed 12,735 ha. It was followed by 
the Vilariño de Conso fire (7,090 ha; WF_3) as well as the Laza fire 
(3,634 ha; WF_5), Verín (2,325 ha; WF_7), Verín (2) (917 ha; WF_10), 
Oímbra (897 ha; WF_11), O Irixo (831 ha; WF_12), Lobeira (640 ha; 
WF_13) and Carballeda de Valdeorras (2) (594 ha; WF_14). The Caldas 
de Reis fire (WF_15) in Pontevedra devastated 573 ha, and the Boiro fire 
(WF_8) burned 2,232 ha. Additionally, large forest fires were reported in 
Portugal, such as the Tresminas (7,641 ha; WF_4) and Vilela Seca fires 
(3,127 ha; WF_6) (Joint Research Centre, 2023). 

2.3. Site description and data validation 

Between June 1 and August 30, we deployed a network of 18 low- 
cost PurpleAir PA-II outdoor monitors (PA-II-SD; PurpleAir Inc.) across 
the Galicia region. We selected firefighter stations across Galicia, where 
the sensors were installed outside the station ensuring unimpaired 
airflow around them and with a nearby electrical power source. The 
PurpleAir monitors measure total PM2.5 concentration with a ≤ 10 s 
time resolution using 2 Plantower sensors (referred to as channels A and 
B) in parallel for quality control. The 2-min data were averaged to 1-h 
values. 

To evaluate the performance of the monitors, we conducted an 
intercomparison of 1-h averaged PM2.5 concentrations between Pur
pleAir and EU-reference equivalent data (Grimm180 laser spectrometer 
calibrated against EU-reference gravimetric measurements) during a 1- 
month period at the Barcelona – Palau Reial urban air quality moni
toring station prior to the field campaign the intercomparison was 
repeated after the end of the field campaign. In addition, inter-unit 
variability was also assessed to determine the consistency between 
monitors. 

Finally, we conducted tests on different data validation and cali
bration methods, aiming to identify the most optimal data processing 
protocol for the geographical region (NW Spain) and the main targeted 
emission source (wildfires). We calculated and evaluate the ALT-CF3 
correction developed by Wallace et al. (2021)- by comparing the data 
from monitor PA17 with the EU-reference data from the Gómez-Fran
queira air quality station located in Ourense, Galicia, where this monitor 
was deployed during the summer period. Furthermore, we tested two 
US-EPA (Evans et al., 2021) and Barkjohn et al. (2021) correction 
equations. The CF = Atm and CF = 1 calibration methods provided by 
Plantower were also explored. 

2.4. Back-trajectory calculations 

We calculated air parcel back-trajectories using HYSPLIT (Stein 
et al., 2015) with the GFS 0.25-degree meteorological data set. Five-day 

back-trajectories with hourly endpoints arriving at each of the 18 re
ceptor sites, at 750 m agl, were calculated for every hour for all of days 
between June and August 2022. 

2.5. Data analysis 

In this study, we utilized source apportionment models to assess the 
impacts of wildfire emissions, utilizing the PM2.5 data monitored using a 
network of 18 low-cost PurpleAir monitors. Specifically, we employed 
source apportionment methods that rely on the statistical evaluation of 
PM2.5 data collected at receptor sites. Receptor modeling operates based 
on the principle of mass and species conservation, employing mass 
balance analysis to identify and allocate sources of airborne PM in the 
atmosphere (Viana et al., 2008; Hopke, 2010). We used the most 
frequently employed receptor models (Hopke et al., 2020), Positive 
Matrix Factorization (PMF), implemented by EPA PMF V5 (Norris et al., 
2014) to conduct an Empirical Orthogonal Function (EOF analysis). 
EOFs uses eigenvector analyses to calculate orthogonal vectors of linear 
combinations of the original variables, thus capturing the maximum 
variance contained in the original data (Wilks, 2005). Because PMF does 
not produce orthogonal vectors, this analysis is considered a quasi- 
orthogonal empirical function (QEOF) analysis While EOF analyses 
typically describe spatial patterns, e.g., the spatial variability of mete
orological parameters, PMF is typically utilized for source apportion
ment of samples collected at receptor locations over time. Finally, 
Concentration-Weighted Trajectory (CWT) analysis focuses on the 
location of specific emission sources. 

The input for the concentration data file for the PMF analysis con
sisted of the PM2.5 data series measured at the 18 PurpleAir monitors 
between June 1 and August 30, 2022. The input consisted of a matrix of 
size 1400 × 18, where the values represented the mean hourly PM2.5 
concentrations for all monitors after applying a correction which was 
selected at the start of the study (see Section 3.1). Monitors with signal- 
to-noise ratios (S/N) between 0.5 and 1.0 were defined as weak vari
ables, while those with ratios below 0.5 were categorized as bad and 
were excluded from the PMF analysis. Thus, monitors PA6, PA12, PA14 
and PA16 were classified as weak variables and PA13 was not consid
ered in the analysis. The number of runs used was 20, with seed number 
33. From the twenty runs, the convergent run with the minimum Qrobust 
reported by EPA was used for the solutions presented in this study. 
Additionally, the distribution of scaled residuals for each variable were 
within ±3, which was considered acceptable according to the literature. 
PMF was run for solutions ranging between 5 and 9 factors. The un
certainty input matrix was calculated using following equation: 

Σ = 0.15x+
5
3

(1)  

where x is the PM2.5 measured concentration. 
We used back-trajectory analysis and the CWT back trajectory- 

ensemble model to assess the source emissions contributing to 
observed PM2.5 concentrations during the wildfire events and the ac
curacy of single-site versus multiple-site methods. Specifically, CWT 
locates the pollutant source by assigning concentration values at the 
receptor site to corresponding backward trajectories (Hsu et al., 2003). 
It is described by the following equation: 

Cij =

∑M
l=1Clτijl

∑M
l=1τijl

(2)  

where Cij is the average weighted concentration un the grid cell (i, j). Cl 
is the PM2.5 concentration measured at the receptor site, “τ” ijl is the 
number of trajectory endpoints in the grid cell (i, j) associated with the 
Cl sample and M is the number of samples that have trajectory endpoints 
in grid cell (i, j). Eq. (2) is applied to all individual trajectories. 

To exclude very short term, local events and to focus on the broader 
spatial causalities driving the data, we associated trajectories withthe 

Table 1 
Main wildfire names and total acres burned.  

Fire 
Number 

Name Acres 
Burned 

Initial date Final date 

WF_1 Folgoso do Courel  13,612 14/07/ 
2022 

23/07/ 
2022 

WF_2 Carballeda de 
Valdeorras  

12,735 15/07/ 
2022 

22/07/ 
2022 

WF_3 Vilariño do Conso  7,090 15/07/ 
2022 

24/07/ 
2022 

WF_4 Tresminas*  7,641 17/07/ 
2022 

21/07/ 
2022 

WF_5 Laza  3,634 10/08/ 
2022 

15/08/ 
2022 

WF_6 Vilela Seca  3,127 15/07/ 
2022 

19/07/ 
2022 

WF_7 Verín  2,325 18/07/ 
2022 

21/07/ 
2022  

* Portugal wildfires. 
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measured concentration at the receptor site. This association was 
established using a matrix of reproduced data. This matrix was created 
by multiplying the factor contributions matrix (G) with the transpose of 
the factor profiles matrix (FT). 

3. Results and discussion 

3.1. Sensor calibration and validation 

Results from the intercomparison of PM2.5 concentrations from the 
PurpleAir monitors and the reference instrumentation resulted in r2 >

0.80 for all of the monitors (Fig. S2) using 1-h time resolution values. 
The inter-unit variability resulted in r2 > 0.99 (Fig. S3) between each of 
the monitors and the overall average. Thus, there was comparability 
among the PurpleAir data across the study region, and it was concluded 
that the monitors were able to reproduce the temporal variability of 
aerosol concentrations at an urban background site in Barcelona. 
However, during the initial intercomparison in Barcelona, the PurpleAir 
monitors were only challenged with typical urban PM that is substan
tially different from wildfire smoke. Sensor calibration to represent 
wildfire emissions was subsequently performed by means of data vali
dation and processing methods. 

Fig. S4 shows the mean daily cycle for monitor PA17 (deployed at the 
local reference monitoring station in Galicia) calculated over a 2-month 
period (July–August 2022), after processing by applying different cali
bration methods. A correction factor (CF) was obtained (CF = 3.3) 
following a methodology inspired by the one proposed by Wallace et al. 
(2021), which is comparable to the CF obtained by Wallace and Zhao 
(2023) (CF = 3.4) and to the one recommended by the manufacturer 

(PurpleAir API; CF = 3). This correction lowers the values and brings 
them closer to the EU-reference gravimetric measurements. However, 
the local reference station was not affected by wildfire smoke at the time 
of the comparison. Therefore, the aerosol mixture was regionally- 
relevant for our study (from Galicia), but it did not represent wildfire 
smoke. The Barkjohn et al. (2021) correction provided similar results. 

Correlations between the different corrections and the EU-reference 
data for a 2-month period were calculated. The highest r2 was obtained 
for the US-EPA correction (Evans et al., 2021) (r2 > 0.83) followed by 
the CF = 3.3, CF = 1 and finally the CF = Atm corrections. Therefore, the 
US-EPA correction (Evans et al., 2021) provided the best approach for 
the present dataset. One key advantage is that this correction is proposed 
for wildfire smoke, which is not the case with the calculated correction 
with local reference data (CF = 3.3; Wallace et al., 2021) Once the 
optimal data processing protocol was identified, all the data were 
corrected. 

3.2. Air pollution data series 

The PM2.5 time series plots for each of the 18 study locations are 
shown in Fig. S5. The majority of the monitors showed data availability 
>75 %. The lowest data coverage was for monitors PA6, PA7, PA12 and 
PA13 due to technical limitations mainly linked to disconnection of the 
sensors from the electrical grid. Mean hourly PM2.5 concentrations for 
all monitors after calibration ranged between <5 and 350 μg/m3. An 
hourly maximum of 350 μg/m3 occurred only at one location for 
monitor PA2. Hourly PM2.5 concentrations generally ranged between 1 
and 100 μg/m3 with higher concentrations measured during the peak 
episodes that may have coincided with wildfire events. 

Fig. 1. Source profiles obtained by the PMF (QEOF) analysis of the multiple site PM2.5 data.  
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During the sampling period, meteorological conditions played a 
significant role in the measured PM2.5 concentrations. The monitors 
consistently reported higher values in July compared to August, a dif
ference that can be attributed to weather conditions. According to local 
weather reports from Meteogalicia (2022b, 2022a), high-pressure sys
tems dominated the region in July. Galicia also experienced an un
precedented heatwave between July 11th and 15th, characterized by 
extremely hot and dry weather conditions. Precipitation during this time 
was notably scarce, even nonexistent in regions such as Vigo. These 
weather conditions significantly hindered the dispersion of atmospheric 
pollutants, potentially explaining the observed high PM2.5 values across 
all locations in July. These concentrations were considerably higher 
than those in August, which experienced less stable atmospheric 
conditions. 

3.3. Model results 

The PMF analysis was applied with solutions ranging from 5 to 9 
factors and examined the resulting solutions. After examining the Q/ 
Qexp quotient, an inflection point at the 8-factor solution was observed, 
suggesting it might indicate the correct solution for the model. More
over, solutions with fewer than 7 factors did not adequately capture the 

spatial patterns described by the PM2.5 concentrations recorded across 
the monitoring network. In the 7-factor solution, PA11, PA12 and PA16 
were grouped together, although PA16 explained <50 % of the variance. 
When considering the 8-factor solution, PA16 was grouped with PA14, 
PA18 and PA19, had 50 % of the explained variance, and yielded more 
meaningful interpretations. The 9-factor solution did not provide addi
tional information, and it merely separated the monitors grouped in the 
Ourense region. Therefore, we selected the 8-factor solution as optimal. 
It fit the data as shown in the scaled residual plots and was interpretable. 
Fig. 1 shows the factor profiles describing the relative spatial patterns of 
the sites. Each factor represents a spatial pattern related to one or several 
sites that are receiving PM2.5 from the same source location, i.e. wildfire 
(s). To make the contribution time series quantitatively comparable in 
terms of their magnitude, G-values were normalized by the sum of each 
factor taken over all of the sites. The time series of G-values describing 
the mass concentration of that pattern in that given interval, indicating 
the pattern of possible contributions to the sites across the domain are 
shown as the top panels in Figs. 2, and 4–10. 

3.3.1. Factor 1 
Factor 1 mostly represented the PM2.5 mass concentrations reported 

by monitor PA2. In July, the presence of northwesterly back trajectories 

Fig. 2. Plot of the time-series of contributions from Factor 1 (top). Back-trajectory analysis for Factor 1 associated with the PM2.5 measured at PA2 (2a, 2b, 2c) 
(middle) and CWT for Factor 1 for the period 15–24/07/22 (2d) (bottom). 
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suggested that up to >300 μg/m3 (1 h-mean) of the concentrations 
monitored by PA2 were related to WF_1 in Folgoso do Courel (Fig. 2b). 
Furthermore, during July, southerly back trajectories were associated 
with WF_2 in Carballeda de Valdeorras and WF_3 in Vilariño de Conso 
fires, where concentrations exceeded 250 μg/m3 (Fig. 2a, c). These 
findings are supported by the CWT analysis results, which identified the 
hotspot located above the aforementioned fires (Fig. 2a). Conversely, 
results suggested that the remaining peak concentrations monitored in 
August were linked to short-term local sources (e.g., probably local 
traffic or other local activities). 

The CWT analysis was performed for short-term periods coinciding 
with the wildfires (Fig. 3d) as well as for the full summer period 
(Fig. 2a). Results based on the different time resolutions highlight the 
influence of different emission sources. The wildfire emissions from 
WF_1–3 are evident for Factor 1 in both maps (Figs. 2d, 3a). However, 
the map corresponding to the full summer (Fig. 3a) highlights the border 
area between northern Portugal and Galicia, in close proximity to Bra
gança (Portugal) as another emission source. This source likely en
compasses the influence from industrial activities and traffic emissions 
originating from Bragança, which impacted the study area driven by 

Fig. 3. CWT analysis conducted throughout the entire monitoring period for: a) Factor 1 associated with the PM2.5 measured at PA2; b) Factor 2 associated with 
PM2.5 measured at PA14; c) Factor 3 associated with the PM2.5 measured at PA7; d) Factor 4 associated with the PM2.5 measured at PA11; e) Factor 5 associated with 
the PM2.5 measured at PA9; f) Factor 6 associated with the PM2.5 measured at PA4; g) Factor 7 associated with the PM2.5 measured at PA8; h) Factor 8 associated with 
the PM2.5 measured at PA3. 
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southerly winds. These results show the relevance of the CWT mapping 
at different temporal resolutions with different purposes: the summer 
average may be useful to evaluate the associations between whole 
period exposure to PM2.5 and wildfire smoke. Conversely, applying CWT 
to specific dates may prove beneficial when investigating short-term 
exposures (Cleland et al., 2022; Grant and Runkle, 2022). 

In a quantitative analysis, wildfires may have influenced this factor 
with an increase in mean PM2.5 concentrations during the wildfire event 
of 36 μg/m3 (with a maximum hourly concentration of 313 μg/m3) 
compared to a background level of 14 μg/m3. 

3.3.2. Factor 2 
Factor 2 primarily characterizes the PM2.5 mass concentrations 

measured by monitors PA14, PA16, PA18, and PA19. Examining the 
backward trajectories shown in Fig. 4, it becomes evident that elevated 
values (>175 μg/m3) observed from 15 to 18/07/22 were driven by air 
masses originating relatively constantly from the southeast (Fig. 4a, b, 
c). Consequently, it is plausible that the smoke plume originating from 
WF_1, WF_2, and WF_3 may have reached the areas monitored by PA14, 
PA16, PA18 and PA19 during this time frame. WF_6 in Vilela Seca and 
WF_4 in Tresminas likely contributed to the observed values as well, 
especially on 18/07/22. In this case, the back trajectories did not pass 

over the wildfire regions, but they did pass through the smoke plume as 
may be observed by NASA Worldview satellite images (NASA, 2024). 
This result confirms the impact of smoke from these wildfires in the 
receptor areas, which were reached by back trajectories associated with 
the monitoring sites related to Factor 2 (Fig. S6). However, on 19/07/ 
22, a significant shift in wind direction resulted in atmospheric 
cleansing. Nonetheless, on 21/07/22, the return of south-southeastern 
winds could have once again transported smoke-laden masses from 
the aforementioned fires, initially affecting PA18 and PA19, and sub
sequently PA14 and PA16 (Fig. 4d). This last contribution led to po
tential concentrations of up to 75 μg/m3 and it is also supported by the 
CWT map for the corresponding period (Fig. 4f). Furthermore, it is 
conceivable that the WF_5 in Laza and WF_12 in Irixo may also have 
played a role in influencing this factor between 10/08/22 and 15/08/22 
attaining values up to 75 μg/m3 (Fig. 4e). 

Fig. 3b illustrates the results of the CWT analysis for Factor 2 asso
ciated with PM2.5 concentrations measured by monitor PA14. This 
analysis spans the entire monitoring period. As the back-trajectory 
analysis showed, smoke transport between these sites followed a 
sequential pattern, initially showing up at PA18 and PA19, and suc
cessively reaching PA14 and PA16. 

The impact of wildfires in factor 2 increased the mean PM2.5 

Fig. 4. Plot of time-series of contributions for Factor 2 (top). Back-trajectory analysis for Factor 2 associated with the PM2.5 measured at PA14 (4a, 4b, 4c, 4d, 4e) and 
CWT for the period 20–22/07/22 (4f) (middle and bottom). 
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concentrations by 36 μg/m3, with the highest hourly concentration 
reaching 189 μg/m3, compared to the baseline level of 24 μg/m3. 

3.3.3. Factor 3 
Factor 3 was predominantly associated with the mass concentrations 

measured by monitor PA7. The CWT analysis shown in Fig. 5f shows that 
the potential source area for this sensor was situated to the northwest of 
Portugal where several small fires (<500 ha) ignited on 13/07/22: 
WF_17 in Lanhelas, WF_19 in Portela and WF_21 in Gondomil e Sanfins. 
The relevance of these emissions is evident even in the summer average 
(Fig. 3c). The emissions from these WFs may have contributed to the 
period of high concentrations (100 μg/m3) observed in July and driven 
by southeasterly winds (Fig. 5a, b, c, d). WF_9 in Britelo with an area of 
849 ha that burnt on the same day despite being more distant from the 
site, might also be linked to these high PM2.5 concentration periods. 
Conversely, on 19/07/22, a notable change in wind direction led to 
cleansing of the trajectory paths. Finally, it is possible that WF_16 in 
Arbo also played a role in elevating concentrations up to 80 μg/m3 on 
the 31/07/22 (Fig. 5e). Notably, from 09 to 31/08/22, the sensor failed 
to record data, producing a considerable amount of noise in the pre
dicted concentrations. 

It has been observed that the influence of wildfires in this factor 
resulted in a mean increase of 39 μgPM2.5/m3 during the main wildfire 
event, with the peak hourly concentration reaching 124 μg/m3, as 
opposed to the background level of 30 μg/m3. 

3.3.4. Factor 4 
Factor 4 mostly describes the PM2.5 concentration data measured by 

PA11 and PA12, both of which were situated in relatively coastal loca
tions. This coastal proximity suggests potential susceptibility to the in
fluence of the land-sea breeze, which can modify the effect of inland 
emission sources. Similar to the previous factor, the emissions from 
several small fires (<500 ha) that ignited on 13/07/22 in northwestern 
Portugal could have contributed to high concentrations (>200 μg/m3) in 
July. During this period, air masses originated from the south of the 
study area (Fig. 6b). This result appears to be confirmed by the hotspot 
identified by CWT analysis in Figs. 6c and 3d, which also points to 
northwestern Portugal as a potential source area. However, the highest 
observed PM2.5 concentration (>350 μg/m3 on 13/07/22) appears to be 
unrelated to these aforementioned fires as indicated by back-trajectories 
showing air masses originating from the sea (Fig. 6a). In this case, the 
land-sea breeze effect might have redirected the influence of inland 
emission sources. Finally, on 06/08/22 emissions from WF_18 in Pon
tevedra are likely linked to this factor due to their proximity to the 
monitoring sites and the south-eastern origin indicated by back trajec
tories. This connection contributes significantly to concentrations 
exceeding 50 μg/m3. 

It was observed that wildfires may have caused the mean PM2.5 
concentrations to rise by 35 μg/m3 (on average for the main wildfire 
event), with the maximum hourly concentration reaching 216 μg/m3, in 
contrast to the background level of 20 μg/m3 in this factor. 

Fig. 5. Plot of time-series of contributions for Factor 3 (top). Back-trajectory analysis for Factor 3 associated with the PM2.5 measured at PA7 (5a, 5b, 5c, 5d, 5e) and 
CWT for the period 13–18/07/22 (5f) (middle and bottom). 
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Fig. 6. Plot of time-series of contributions for Factor 4 (top). Back-trajectory analysis for Factor 4 associated with the PM2.5 measured at PA11 (6a, 6b) and CWT for 
the period 13–18/07/22 (6c) (bottom). 

Fig. 7. Plot of time-series of contributions for Factor 5 (top). Back-trajectory and CWT analysis for Factor 5 associated with the PM2.5 measured at PA9 (7a, 7b) and 
CWT for the period 15–19/07/22 (7c) (bottom). 
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3.3.5. Factor 5 
PA9 exhibited a predominant influence on Factor 5. The results ob

tained from the CWT analysis (Figs. 7c and 3e) suggest the potential 
source area was situated in the southeastern region of the PA9 site, 
spanning across the urban and industrialized zones of northern coast of 
Portugal. The occurrence of WF_6 in Vilela Seca fire also appears to have 
significant influence on this factor, particularly when the winds origi
nated from the south-southeast direction during the period from 15 to 
18/07/22. This meteorological condition led to air pollutant concen
trations reaching 60 μg/m3 (Fig. 7a). Additionally, on 18/07/22, the 
contribution of WF_7 in Verín may also likely contributed to this factor. 
On 19/07/22, a consistent west-southwest wind direction suggests that 
emissions from WF_4, WF_6, and WF_11 substantially contributed to 
peak concentrations exceeding 160 μg/m3 (Fig. 7b). 

Furthermore, the proximity of WF_10 to Verín in August likely ex
plains the concentration peak exceeding 150 μg/m3 observed on 03/08/ 
22. It is plausible that several other instances of elevated pollutant 
concentrations exceeding 60 μg/m3 may be attributed to local emission 
sources. 

An increase of 21 μg/m3 in the mean PM2.5 concentrations during the 
duration of the main wildfire event was observed, with the highest 
hourly concentration reaching 162 μg/m3, in comparison to the back
ground level of 12 μg/m3 in Factor 5. 

3.3.6. Factor 6 
Factor 6 includes a cluster of monitors, specifically PA4, 5, 6, 15, 17, 

and 22. On 13/07/22, emissions from WF_20 in Melón and WF_22 in 
Ribadavia probably contributed to the increased PM2.5 concentrations 

observed in this factor's contributions, especially when air masses 
originated from the southwest (Fig. 8a). During the period 15–16/07/ 
22, the transect of the southeasterly back trajectories, passing through 
WF_6, likely resulted in pollutant concentrations reaching 200 μg/m3 

(Fig. 8b) as also shown in the CWT map corresponding to this time 
period (Fig. 8d). The presence of back trajectories originating from the 
northeast of the monitoring sites was likely associated with the smoke 
from WF_1 and WF_3, as supported by the NASA Worldview observation 
(NASA, 2024) on 20/07/2022 (Fig. S6). This led to the highest con
centration recorded for this factor, exceeding 400 μg/m3 (Fig. 8c). The 
results derived from the CWT analysis indicated that the potential source 
region for this factor was situated in the central part of northern 
Portugal, primarily driven by southeasterly air masses (Fig. 3f). 

The impact of wildfires in Factor 6 is evident in a 63 μg/m3 increase 
in the mean PM2.5 concentration, with the highest hourly concentration 
reaching 435 μg/m3, contrasting with the background level of 34 μg/m3. 

3.3.7. Factor 7 
Factor 7 was primarily driven by monitor PA8. The CWT analysis 

conducted for the entire monitoring period (Fig. 3g) shows similarities 
to the CWT analysis for Factor 6, indicating that this monitor also 
received emissions from northern Portugal. However, there is a notable 
difference in that PA8 was likely affected by emissions from WF_13 in 
Lobeira on 24/08/22 (Fig. 9b). The advection of air masses passing 
through this wildfire may be associated with concentrations up to >50 
μg/m3 at the monitoring site. CWT map corresponding to this time 
period (Fig. 9c) also points WF_13 as a potential source. Furthermore, 
during early August, the divergent directions of back trajectories related 

Fig. 8. Plot of time-series of contributions for Factor 6 (top). Back-trajectory and CWT analysis for Factor 6 associated with the PM2.5 measured at PA4 (8a, 8b, 8c) 
(middle) and for the period 13–16/07/22 (8d) (bottom). 
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to the highest concentrations recorded by PA8 suggest that a local source 
may be the primary contributor affecting this monitor (Fig. 9a). 

In this factor, wildfires may have contributed to an increase in the 
mean concentration during the main wildfire event by 24 μgPM2.5/m3, 
with the peak hourly concentration reaching 97 μg/m3, compared to the 
background level of 19 μg/m3. 

3.3.8. Factor 8 
Factor 8 was dominated by PA3. The high values of the CWT analysis 

were driven by the presence of southwesterly air masses, indicating 
source areas in northeastern Portugal (Fig. 3h). Notably, the transect of 
the south-southeasterly back trajectories between 16 and 18/07/22, 
passing through the WF_3 region, likely contributed to PM2.5 concen
trations reaching 150 μg/m3 (Fig. 10a, b, d, e). Additionally, emissions 
from WF_1 may have been a source when air masses originated from the 
northeast of the sensor site on 20/07/22, leading to the highest values 
measured by PA3 (Fig. 10c). These results were consistent with those 
from the CWT map (Fig. 10f). Several other observed values with con
centrations exceeding 50 μg/m3, may be attributed to emissions from 
local sources. 

It appears that wildfires may have caused a 25 μgPM2.5/m3 increase 
in the mean concentration during the wildfire event, with the maximum 
hourly concentration peaking 219 μg/m3, as opposed to the background 
level of 19 μg/m3 in Factor 8. 

4. Summary and conclusions 

Source apportionment of wildfire emissions contributing to PM2.5 
concentrations was performed using PMF combined with back- 
trajectory analysis and concentration-weighted trajectory (CWT) anal
ysis. The impacts from several of the major wildfires were detected as 

high PM2.5 concentrations across the study area. WF_1 in Folgoso do 
Courel, the largest fire that occurred during the study period, contrib
uted to a significant number of factors (four factors). Alternatively, WF_6 
in Vilela Seca was linked to three factors, showing that the emissions 
from fires in Portugal reached Galicia. This pattern was also observed for 
WF_4 in Tresminas, located even further to the south of Galicia. WF_3 in 
Vilariño de Conso affected three factors. Despite its considerable size, 
WF_2 in Carballeda de Valdeorras appeared to only affect Factor 1, 
which was strongly associated with the PA2 site. Finally, smaller fires 
also contributed to the high concentrations observed at nearby moni
toring sites. 

In terms of impact, wildfires led to an increase in background levels 
ranging from on average 21 to 39 μg/m3 for the duration of the wildfire 
events (from 5 to 10 days) for all factors except Factor 6, where the 
increase was 63 μg/m3, with a maximum hourly peak concentration 
reaching 435 μg/m3. 

We conclude that the use of the PMF-derived quasi-empirical 
orthogonal functions (QEOFs) to apportion the spatial distribution of air 
pollutants provided robust results and facilitated identifying 8 factors 
representing spatial patterns associated with one or multiple sites 
affected by the same specific wildfire. The use of a network of low-cost 
monitors proved useful in quantifying the effects of wildfires on air 
quality and identifying potential source areas. These results may be 
valuable for short and long-term epidemiologic studies and health 
impact assessment studies. 
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://www.meteogalicia.gal/datosred/infoweb/clima/informes/estacions/mensuais/2 
022/202207_gl.pdf. 

Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.Q., Smith, K. 
R., 2007. Woodsmoke health effects: a review. Inhalation Tox. 19, 67–106. https:// 
doi.org/10.1080/08958370600985875. 

NASA, 2024. NASA Worldview. Retrieved March 1, 2024. https://worldview.earthdata. 
nasa.gov. 

Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 
5.0 Fundamentals and User Guide. U.S. Environmental Protection Agency, 
Washington, DC. EPA/600/R-14/108 (NTIS PB2015-105147).  

Reisen, F., Duran, S.M., Flannigan, M., Elliott, C., Rideout, K., 2015. Wildfire smoke and 
public health risk. Int. J. Wildland Fire 24, 1029–1044. https://doi.org/10.1071/ 
WF15034. 

Shakesby, R.A., Doerr, S.H., 2006. Wildfire as a hydrological and geomorphological 
agent. Earth Sci. Rev. 74, 269–307. https://doi.org/10.1016/j. 
earscirev.2005.10.006. 

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. 
NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. 
Amer. Meteor. Soc. 96, 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1. 

Stowell, J.D., Geng, G., Saikawa, E., Chang, H.H., Fu, J., Yang, C.E., Zhu, Q., Liu, Y., 
Strickland, M.J., 2019. Associations of wildfire smoke PM2.5 exposure with 
cardiorespiratory events in Colorado 2011-2014. Environ. Int. 133, 105151 https:// 
doi.org/10.1016/j.envint.2019.105151. 

Taylor, K.T., Maxwell, B.D., McWethy, D.B., Pauchard, A., Nuñez, M.A., Whitlock, C., 
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