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Abstract
Purpose of Review  The spatial forest planning concept has evolved as an essential component of the forest management 
planning process. The development of both exact and heuristic modeling techniques as analytical solution techniques have 
seen significant progress in application to spatial forest planning over the last two decades. This paper aims at providing a 
comprehensive review of the current state of spatial forest planning in both scope and depth, focusing on different approaches 
and techniques used, the challenges faced, and the potential future developments. For that purpose, we conduct a world-
wide literature review and an extensive analysis of the status and trends over the past two decades in spatial forest planning.
Recent Findings  The literature review indicates that recent advancements have led to the development of new algorithms/
formulations for addressing spatial constraints in forest planning with exact solution techniques. Nevertheless, it highlights 
further that heuristic techniques are still widely used, especially in large real-world problems that encompass multiple eco-
system services and constraints. Besides the provisioning services, there has been a noticeable increase in the proportion 
of regulating, supporting and cultural services addressed in objective functions of forest management planning models. 
Adjacency/green-up relationships, opening size, core area, wildlife habitat and the spatial arrangement of fuel treatments 
have been considered as indicators to address the provision of these services and spatial forest problem.
Summary  We pinpoint persistent challenges to using exact modeling techniques to address large real problems with multiple 
ecosystems services. We highlight further that determining the optimal combination and values of heuristic parameters and 
assessing the quality of heuristic solutions remains a central challenge. Finally, we highlight the potential of artificial intel-
ligence to overcome computational obstacles to the application of both exact and heuristic techniques to spatially explicit 
forest management planning.

Keywords  Spatial forest modeling · Exact techniques · Metaheuristics · Forest landscape structure · Decision support 
system · Ecosystem services

Introduction

The structure of forest landscapes, including the compo-
sition and the configuration of the landscape, impacts the 
provision of multiple ecosystem services (ES) and must 
thus be addressed by forest management planning. It plays 
a critical role in maintaining ecological integrity, which 
encompasses a wide range of ecological functions and pro-
cesses, ultimately leading to the provision of several eco-
system services [1–4]. The functions include for example 
facilitating habitat connectivity, regulating carbon seques-
tration, supporting water provision and enhancing erosion 
control activities. Moreover, various biological, chemical, 
and physical processes that occur within ecosystems, influ-
ence the flow of energy, matter, and nutrients (i.e., nitrogen 
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fixation, succession, disturbances and resilience) and thus 
the provision of ecosystem services [4, 5]. Nevertheless, 
the escalating global demand for food, fuel, and fiber has 
resulted in intensified fiber production and more homog-
enous forest landscape mosaics that impact the vulnerability 
to pests and diseases [6] and to wildfires [7–9] as well as the 
biodiversity conservation [10–12]. This trend impacts the 
ecological integrity of forest landscaped and poses detri-
mental effects to the sustainability of global forest resources 
management. In response to this challenge, forest manage-
ment planning endeavors to reconcile the growing demand 
for forest products while simultaneously striving to create 
target landscape structures that can effectively sustain eco-
logical integrity and thus fulfill green certification standards, 
account for aesthetic considerations, comply with nature or 
biodiversity conservation and tackle problems arising from 
landscape fragmentation [7, 13••, 14–16].

Forest management model development should encom-
pass the recognition of spatial configurations of landscape 
patches and management interventions, in addition to incor-
porating traditional temporal and compositional character-
istics. Hence, there is a critical need to integrate nonlinear 
relationships between decision variables, such as among 
schedules of stand-level management options, while control-
ling the spatial arrangement of patches to achieve multiple 
forest management objectives [1, 17, 18•]. This concept, 
termed spatial forest planning, entails the systematic integra-
tion of spatial information and landscape features into forest 
management planning, leveraging both spatial information 
technologies and analytical solution techniques to formulate 
optimal forest management plans [13••, 18•]. Unlike con-
ventional forest planning, spatial forest planning emphasizes 
the spatial organization of forest management activities by 
considering spatial features such as the size, shape, and jux-
taposition of forest patches (e.g., land use patterns, habitat 
connectivity, adjacency, green-up delay) distributed across 
the landscape. Modelling techniques such as linear program-
ming and integer programming (i.e., exact methods) have 
often been used to indicate which forest stand to treat in 
each period to meet management objectives subject to cer-
tain political, silvicultural, environmental and other planning 
constraints. In fact, they are valuable tools for optimizing 
forest management planning processes, considering spatial 
and temporal dynamics, and balancing multiple objectives 
and constraints to achieve sustainable forest management 
outcomes. In that process, concerns with the spatial distribu-
tion of management options have also long been included 
explicitly in decision models to address the provision of 
ecosystem services that depend on the landscape structure. 
The literature reports that both exact mathematical meth-
ods (i.e., mixed integer programming) and heuristic tech-
niques (i.e., simulated annealing) have been used increas-
ingly in spatial forest planning efforts to produce optimal or 

near-optimal solutions, with relatively shorter computational 
times. In fact, characterizing and controlling the spatio-
temporal structure of forest landscape with those methods 
encapsulated in a decision support system (DSS) has been a 
promising as well as challenging research endeavor in for-
est management planning [13••, 18•, 19–22]. Coordinating 
management planning across multiple forest ownerships in 
larger areas with modeling efforts addressing spatial details 
and neighborhoods has also become part of spatial plan-
ning [23]. Spatial requirements on the distribution of man-
agement options over the landscape are often expressed in 
the form of minimum and maximum harvesting area limits, 
adjacency (i.e., green up delay) restrictions, connectivity and 
proximity, and core area. The spatial forest model is unique 
in the sense that spatial conditions become a target objective 
just like any typical product flow objective.

Some literature reviews have examined spatial considera-
tions in forest management planning. De Pellegrin Llorente 
[13••] explored factors such as wildlife habitat, invasive spe-
cies, and harvesting costs, recommending tradeoff analyses 
and parallel processing for better understanding of forest 
dynamics. Belavenutti [24] focused on industrial forest plan-
tations, highlighting hierarchical planning approaches for 
biodiversity conservation and nature protection. Yoshimoto 
[25•] emphasized research gaps in incorporating forest car-
bon sequestration into optimization frameworks. Baskent 
et al. [26, 27•] reviewed multiple-use forest management 
planning and ecosystem service assessments, while Franca 
et al. [4] focused on economic benefits in forest certification. 
Blanco and Lo [21] examined forest modeling, emphasiz-
ing integrated approaches driven by climate change impacts. 
Most recent review papers have focused on a specific topic 
such as optimization and multi-criteria forest management 
[25•, 26, 28], landscape management [13••], economics of 
forest planning [4, 29], current state of forest modelling [21] 
and techniques and approaches used in industrial plantations 
[24]. However, they do not focus specifically on the explora-
tion of the techniques and methods used for the concept of 
spatial forest planning.

Earlier reviews by Baskent and Keles [18•] and Shan et al. 
[22] highlighted adjacency and green-up relationships in 
forest management planning, discussing limitations of MIP 
and heuristic parameter selection. However, the conceptual 
framework defined in these reviews has become outdated, 
motivating a reassessment to incorporate new approaches 
supporting spatial planning for multiple ecosystem ser-
vices. This paper aims to provide a comprehensive review 
and analysis of spatial forest planning initiatives since 2005 
(as there was a similar review by that time), focusing on 
the use of analytical solution techniques such as optimi-
zation methods and heuristics in designing forest mosaics 
and understanding the implications of spatial arrangements 
on the provision of ecosystem services. It explores any 
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developments in spatial forest modeling in terms of model-
ling architecture, modeling techniques, solution approaches, 
spatial database and multiple ecosystem services, contribut-
ing to both advancing knowledge in spatial forest planning 
and ultimately promoting the conservation and sustainable 
use of forest ecosystems. For that purpose, this paper pro-
vides an overview of the contextual background regarding 
spatial forest management planning problems, challenges, 
trends, innovations, and scientific progress witnessed in the 
last two decades. The objective of this scientific paper is to 
provide a comprehensive literature review that examines the 
prevalent approaches and methodologies used as analytical 
solution techniques in spatial forest planning. This includes 
an in-depth analysis of exact techniques, meta-heuristics, 
artificial intelligence, game theory, and other spatially 
explicit methods employed to address spatial problems in 
forest management planning. Additionally, the review aims 
to identify and discuss emerging trends, current challenges, 
and future opportunities in the field, offering insights into 
potential advancements and applications of these method-
ologies in spatial forest planning.

Review Method

We planned the work to address the connections among the 
concept, approaches, and techniques used in spatial for-
est planning based on scientific knowledge. The literature 
review was set to cover the scientific publications from 2005 
to 2023. Nevertheless, it was considered some of the earlier 
references and reviews were relevant to lay out the ground to 
the introduction and the discussion of spatial planning. The 
literature was retrieved from Journal Citation Reports (JCR) 
journals. Firstly, we used the term “spatial forest planning” 
to retrieve all papers published in the period 2005–2023 in 
the ISI Web of Knowledge. Secondly, additional keywords 
were used in further queries in order to ensure the retrieval 
of other papers addressing issues relevant to spatial forest 
planning from the same database (e.g., “spatially explicit 
harvest scheduling”, “Spatial pattern”, “Landscape struc-
ture”, “adjacency”, “green up delay”, “opening size”, “hab-
itat connectivity”, “core areas”, "edge effects” combined 
with the terms “forest management planning” or “harvest 
scheduling”.

The literature review was meticulously structured, catego-
rizing decision-making methods into their main classes and 
providing detailed insights into the specific types of decision 
methods employed by the researchers across various stud-
ies. Additionally, the review systematically categorized eco-
system services, shedding light on the diverse dimensions 
explored by the researchers. A temporal perspective was also 
incorporated by classifying the literature based on publica-
tion years. Each publication was scrutinized to discern the 

predominant decision-making methods, specific decision-
making techniques, and the spectrum of ecosystem services 
addressed in the respective research endeavors (Annex 1). 
To enhance clarity, comprehensive tables and graphs were 
crafted, offering a visual representation that facilitated a 
nuanced understanding of the literature review.

The full set of papers retrieved was examined to exclude 
duplicate records as well as to select the references that were 
relevant to the objectives of this review. Afterwards each 
article underwent a comprehensive scientific analysis that 
delved into various aspects of spatial forest planning. The 
in-depth analysis covered a wide range of aspects, includ-
ing the conceptual approaches utilized, the spatial elements 
incorporated, the specific DSS and methods employed, the 
ecosystem services integrated, spatial planning concepts 
addressed, the risks and uncertainties dealt with, and the 
pertinent policies and regulations considered. These results 
were then synthesized to determine the contributions made 
by these studies to the broader understanding of the contri-
bution of spatial planning to the efficiency and the effective-
ness of forest ecosystem management planning. The analysis 
also aimed at identifying the strengths and weaknesses of 
these contributions to the implementation of spatial forest 
planning in practical real-world applications. Furthermore, 
potential challenges that may arise in future work were iden-
tified and discussed.

Approaches/Methods and Decision‑Making 
Techniques Used in Spatial Forest Planning

The design of the landscape mosaic often involves the use 
of exact or heuristic solution techniques [30, 31, 32•, 33, 
34, 35••]. However, integrating spatial features can substan-
tially increase the computational complexity of the problem, 
almost rendering it intractable [18•, 22, 36]. Therefore, it 
may become necessary to scale down and simplify the prob-
lem to attain a manageable solution within a hierarchical 
process. Eyvindson et al. [3] demonstrated this approach 
by integrating the upper hierarchical level with a subset of 
lower hierarchical level issues, forming a comprehensive 
optimization problem solved with a variation of the goal 
programming technique with an iterative methodology. 
The landscape-level management plans generated through 
this iterative process exhibited significant improvements in 
strategic solutions, approaching the global optimum. This 
suggests that when a problem becomes exceptionally chal-
lenging and difficult to solve, a hierarchical approach has 
the potential to facilitate the incorporation of spatial factors 
into practical applications and enable the utilization of exact 
solution techniques at the landscape level.

Various approaches have been developed and exten-
sively documented in the literature to span both individual 
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classes of methods and the integration of exact methods 
with heuristic strategies [37–41]. The literature review 
indicates that the number of papers utilizing exact methods 
were predominantly used (44 papers, 39%) by the research-
ers followed by the number of researches using heuristics 
methods (34 papers, 30%) (Fig. 1a). The exact methods 
typically involve algorithms or techniques that guarantee 
optimal solutions within certain computational constraints. 
Heuristic methods, however, are approximate algorithms 
that aim to find relatively good or near optimal solutions 
quickly. Only 10% of the literature (11 papers) combined 
both exact and heuristic methods in their decision-making 
approaches. This meaningful amount of research suggests 
a hybrid approach, possibly leveraging the strengths of 
both types of methods. A reasonable proportion of the lit-
erature (25 paper, 22%) falls into the category of "Other," 
which may include conceptual papers, review articles, or 
studies that apply other decision-making methods such as 
Multi-Criteria Decision Analysis (MCDA) and Artificial 
Intelligence (AI).

Regarding the detailed classification of decision-mak-
ing methods into "types of decision-methods”, researchers 
predominantly favor MIP representing 19% of decision-
making methods in spatial forest management, followed 
by simulated annealing (SA) heuristics at 11% (Fig. 1b). 
Other notable methods include integer programming 
(10%), linear programming (9%), and tabu search (4%). 
Less common methods such as genetic algorithm, thresh-
old accepting, ant colony, cellular automata, and great 
deluge heuristics were also utilized, reflecting a diverse 
range of approaches. Some researchers explored alterna-
tive solutions with less common exact methods like goal 
and dynamic programming. Despite their complexity, 
these methods were tested for novel perspectives in spa-
tial forest management. The distribution of publications 

shows an increasing trend from 2015 onward, indicating a 
growing interest in the subject during this period (Fig. 2).

Exact Optimization Techniques

Exact optimization refers to an algorithm that guaran-
tees finding the best possible solution to a given problem 
within a specified set of constraints and conditions. These 
techniques are characterized by their ability to system-
atically explore all possible solutions to identify the one 
that optimally satisfies the problem's objective function. 
However, they may be computationally intensive and 
time-consuming, especially for complex problems with 
a large search space. They include linear programming, 
integer programming, dynamic programming and mixed-
integer linear programming. They have been extensively 
used in forest planning, particularly in solving the har-
vest scheduling problem [31, 35••, 42••, 43, 44]. Over 
the last three decades, however, the exact methods have 
been also tailored to solve spatial forest planning problem 
that include spatial variables describing key elements of 
habitat reserve such as core area and connectivity, as well 
as adjacency and opening size constraints. A thorough 
exploration of the specific applications, limitations, and 
implementations of exact techniques has been cautiously 
undertaken in Section “Spatial forest planning with eco-
system services: Case studies and applications “to avoid 
redundancy within the review. The section offers a com-
prehensive and in-depth exploration, providing detailed 
insights into the practical uses of exact techniques in spa-
tial forest planning.

While the optimal solutions are achieved with the exact 
techniques as their major strengths, such approaches have 
still some drawbacks:

Fig. 1   The classification of the number of publications according to the class (a) and types of methods (b) used. “Exact/heuristic” classification 
refers to the papers that either combine exact and heuristic methods or uses both methods
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•	 It is often cumbersome to formulate and find a feasible 
solution for real forest management planning problems 
involving many ecosystem services and management 
objectives, requiring spatial consideration and stochastic 
approach [18•, 22, 45, 46]

•	 Reconfiguring forests to reduce the problem size due 
to computation difficulties can result in a loss of spatial 
detail and resolution.

•	 In most of the exact techniques, forest re-stratification 
is performed a priori which limits the ability of solution 
techniques to explore alternative spatial configurations 
for improved solutions.

•	 Most of the approaches involve a significant pre-process-
ing compilation to enumerate sets, still requiring more 
computational time and memory usage.

•	 Due to the linearity of the relationships among the deci-
sion variables, model building is complicated by the 
need to address issues involving non-linear relationships 
between the decision choices, such as those related to 
spatial patterns, wildlife habitat, and fire behavior inte-
gration. [47, 48].

Contemporary forest management planning is a multifac-
eted endeavor, encompassing a multitude of ecosystem ser-
vices, diverse objectives, and involving multiple ownerships 
and stakeholders. It necessitates the projection of the future 
forest with multiple intervention entries, such as multiple 
harvests, spanning multiple rotation periods to ensure the 
long-term sustainability of ecosystem services [27•, 35••, 
49]. As forest management planning paradigm expand in 
scope and complexity, relying solely on exact methods for 
formulation becomes increasingly challenging and unwieldy. 
This challenge arises from the growing size and complex-
ity of the spatial data and variables involved, necessitating 
more flexible and scalable approaches to modeling and 

decision-making, such as heuristics. Thus, various types of 
methods can well be developed and used to solve spatial 
forest planning problem.

Meta‑heuristic/Combinatorial optimization 
techniques

In the pursuit of search techniques that offer enhanced con-
venience and simplicity within the domain of spatial forest 
modeling, significant developments have been taken through 
the evolution of metaheuristic approaches. Meta-heuristic or 
combinatorial optimization techniques are powerful meth-
ods used to find high-quality solutions to complex problems 
where the search space is combinatorial in nature, meaning 
that the solution is a combination of discrete elements or deci-
sions. They are general problem-solving strategies that guide 
the search for solutions in large, complex solution spaces. 
Metaheuristics are characterized by their flexibility, simplic-
ity, and ability to provide near-optimal solutions within a rea-
sonable amount of time. They often draw inspiration from 
natural phenomena or human problem-solving processes and 
typically involve iterative improvement processes that gradu-
ally refine candidate solutions. These techniques are widely 
applied in various fields including forestry due to difficulties 
in formulating and solving NP-hard problems such as spatial 
forest planning. A variety of heuristic techniques have been 
employed to address spatial forest problems, such as simu-
lated annealing (SA) [17, 50], tabu search (TS) [51], genetic 
algorithms (GA) [52, 53], threshold accepting (TA) [19] and 
various other hybrid algorithms [30, 54•].

However, the effectiveness of meta-heuristics varies based 
on the complexity of the planning problem, encompassing 
the diverse range of management objectives, ecosystem ser-
vices, and the design of the model with the rational configu-
ration of its parameters [30, 55]. In fact, these techniques are 

Fig. 2   The evolution of the 
publications over time
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closely aligned with optimization methods but emphasize 
a problem-specific approach rather than a purely algorith-
mic one [56]. In another review conducted by Kangas et al. 
[33], metaheuristics are described as tailored to the specific 
problem at hand, focusing on escaping local optima. Fur-
thermore, Pellerin et al. [54•] highlight the advancement 
towards heuristics and hybrid metaheuristics in addressing 
resource-constrained project scheduling problems. In fact, 
hybrid metaheuristics combine various metaheuristic algo-
rithms, as well as other optimization techniques, to create 
more powerful and effective problem-solving approaches. 
For example, a hybrid metaheuristic may combine genetic 
algorithms with simulated annealing or tabu search to 
improve exploration and exploitation capabilities.

In metaheuristics, effectively exploring the solution space 
is vital for finding optimal solutions. In spatial forest plan-
ning, the quality of solutions heavily relies on the search 
technique used between consecutive iterations. Developing 
and employing an efficient neighborhood search technique 
is crucial for improving heuristic results. Bettinger and Zhu 
[57] introduced a novel approach that incorporates unused 
decision options into a solution, addressing any resulting 
problems by selecting better alternatives for affected spatial 
units. Although the study highlighted the significance of this 
approach, its superiority over traditional methods was not 
precisely quantified. Examples of metaheuristics include 
genetic algorithms, simulated annealing, tabu search, parti-
cle swarm optimization, and ant colony optimization.

The simulated annealing (SA) technique, inspired by 
metallurgical annealing, explores the solution space by 
gradually accepting worse solutions with decreasing prob-
ability, escaping local optima to converge near-optimal solu-
tions. SA is a stochastic neighborhood search method that 
examines forest management plans, proposing changes to 
single characteristics like harvest time or activity. It is highly 
parameterized and combines intensification and diversifi-
cation to improve solution quality. Bettinger and Zhu [57] 
propose evaluating solution quality by comparing results 
with exact techniques for relaxed problems or estimating a 
global optimum from heuristic solutions. Cyr et al. [58] used 
both SA and MIP techniques sequentially to determine the 
effects of wildfire and wildlife habitat (Caribou population) 
on harvest level, that were implemented on an area vary-
ing from 50 to 1000 km2 with adjacency constraints. Unit 
restricted model (URM) was used to control the shape (low 
perimeter/area ratio) or harvesting units. They found that the 
combination of heuristics and exact models was beneficial 
in achieving a spatially constrained harvest schedule that 
accounted for wildlife requirements and maximized annual 
allowable cut. Similarly, Chen et al. [2012] developed a spa-
tial forest planning model that integrated timber revenue and 
habitat quality for a forest landscape in northeast China with 
SA based on the area restricted model (ARM) of adjacency 

constraints. The study explored three different management 
strategies: first, maximizing forest net present value (NPV) 
without spatial limitations; second, optimizing the manage-
ment of various levels of suitable habitats while considering 
constraints related to green-up periods and opening sizes 
over a span of two periods. The results demonstrated that 
allowing for habitat generation led to a reduction in total 
NPV ranging from 40.7% to 74.4%. The impact of adjacency 
constraints on NPV and habitat quality was determined to be 
moderate. Furthermore, imposing restrictions on the amount 
of suitable habitat had a significant negative effect on overall 
timber benefits in spatial planning problems.

Tabu search has commonly been used in solving spatial 
forest management problems over a number of decades. Dif-
ferent from SA, the heuristic maintains a short-term memory 
of recently visited solutions and avoids revisiting them. This 
helps escape local optima and allows exploration of different 
regions of the solution space. As well, tabu search utilizes 
various types of solution change methods to intensify and 
diversity the solution to arrive a global optimum. In a typical 
adjacency and opening size based spatial forest planning, 
Bettinger et al. [59] explored three types of decision choices 
or moves, that included a change to the harvest timing of a 
single management unit (1-opt move1), the swapping of two 
management unit's harvest timing (2-opt moves), and the 
swapping of three management unit's harvest timing (3-opt 
moves). They tested four reversion rates (0, 3, 6 and 9 rever-
sion intervals) in three types of s-metaheuristics; threshold 
accepting, tabu search and the raindrop methods [60] in 
combination with three types of moves.

Reversion, which involves resuming a search from a pre-
viously found local optimum, seeks to enhance the search 
of the best solution by focusing on established high-quality 
local optima and uncover potentially improved solutions 
within the same neighborhood. Bettinger et al. [59] used 
a 1841-hectare hypothetical forest that was divided into 87 
management units and solved it with MIP based on URM 
with pairwise adjacency constraints (one period green-up) to 
find out the global optimum. They concluded that (a) rever-
sion does improve the quality of the solutions generated, 
and (b) the rate of reversion is an important factor that can 
affect solution quality.

Dong et al. [61••] evaluated the performances of vari-
ous variants of neighborhood, hybrid and reversion search 
techniques compared to the traditional 1-opt moves. They 
indicated that the performances of all the enhanced search 
techniques of SA generated systematically better results than 

1  N-opt move is the method of changing the schedule of stands over 
time. If a move consists of a change in just one unit, then the move is 
considered a 1-opt move; however, if changes in the harvest periods 
or management activity are made simultaneously for two or n units, 
then it is considered as a 2-opt or n-opt move process.
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a conventional search strategy, at the expense of additional 
computational time. However, the reversion search tech-
nique employing the exchange version of 2-opt moves was 
found to be the most suitable strategy to solve the problem 
with at least a 1% increase in the objective function. In a 
similar yet larger problem, however, changing simultane-
ously the treatment schedule in more than one stand does 
not improve much the performance of SA [62]. Later, the 
same authors such as Dong et al. [63•, 64, 65, 66•] as well 
as Qin et al., [5] used various combination of neighborhood 
search techniques such as 1-opt moves and 2-opt moves in 
SA heuristic to solve three typical spatial problems involving 
non-spatial model, ARM and URM models with different 
parameters. Their objective was to investigate various man-
agement activities for both timber production and carbon 
stocks by adhering to maximum harvest opening size and 
even-flow timber constraints with various neighborhood 
search techniques. The study emphasized the sensitivity of 
optimal solutions in forest management planning to various 
factors such as neighborhood search techniques, problem 
complexity, and parameter rationality. It advocated for the 
generation of multiple independent solutions before apply-
ing heuristics, underscoring its importance. For instance, 
the effectiveness of a neighborhood search strategy (a com-
bination of 1-opt and the swapping version of 2-opt move) 
improved significantly (10%) from smaller to larger sce-
narios, based on objective function comparisons. The study 
recommended utilizing both polynomial and exponential 
functions for parameter estimation in the Simulated Anneal-
ing framework. Regarding carbon management, a non-linear 
pattern was observed in balancing carbon management with 
conventional timber harvest due to challenges in maintaining 
consistent harvests, initial age class structures, and arranging 
harvesting activities [5, 65].

Similar to tabu search approach, "raindrop" has been 
developed and used for addressing spatial forest problems 
[60]. This method incrementally enhances solutions through 
a series of iterative changes that can be chosen either ran-
domly or in a deterministically. During these iterations, a 
harvest unit period is selected at random, without considera-
tion for potential constraint violations. If any adjacency con-
straints are violated during this process, they are promptly 
rectified in a spreading wave-like fashion. The next best 
alternative for the affected management unit is then incor-
porated into the solution. Any other management units sub-
sequently impacted by this change are added to the list of 
affected units. This iterative process continues until all con-
straint violations have been resolved. Zhu and Bettinger [60] 
tested the method in the context of spatial forest planning 
to maximize NPV subject to wood flow and area adjacency 
constraints. They compared its performance to that of simi-
lar heuristics. Their results indicate that the effectiveness 
of these heuristics depends on the initial condition of the 

forest, particularly its age class distribution. Notably, the 
modified raindrop method exhibited superior performance 
when applied to forests with young age class distributions. 
While one advantage of this method lies in its reliance on 
only two parameters (the total number of iterations and the 
number of iterations before reverting to the best solution), a 
drawback is the increasing amount of time needed to solve 
the same problem. Hence, it is suggested that the raindrop 
method is best suited for smaller problems characterized by 
relatively young age class structures.

Inspired by the principles of natural selection and evalua-
tion mechanisms, genetic algorithms (GA) stand out as pow-
erful stochastic optimization algorithms employing probabil-
istic operators [52]. Their distinguishing feature lies in their 
operation with a population of solution vectors, setting them 
apart from many other heuristics. These algorithms operate 
by maintaining a population of potential solutions and apply-
ing selection, crossover, and mutation operators to iteratively 
evolve towards improved solutions. Genetic algorithms have 
found applications in diverse fields, including spatial forest 
planning, as demonstrated by the work of Lu and Eriksson [52]. 
An intriguing example of genetic algorithms in action can be 
found in the study conducted by Fotakis et al. [53]. The study 
utilized genetic algorithms to optimize timber harvest while 
minimizing sedimentation in water runoff to safeguard water 
quality and prevent soil erosion. The genetic algorithm strate-
gically placed old forest stands near streams, reducing sedi-
mentation levels significantly. This approach generated a Pareto 
front of non-dominating solutions, demonstrating the trade-offs 
between timber harvest and soil conservation. By offering a 
spectrum of solutions that reconcile these goals, the genetic 
algorithm provided crucial insights for spatial forest planning.

Other Metaheuristics

In addition to well-known metaheuristics like SA, TS and 
GA, other heuristics are occasionally applied in spatial forest 
modeling. For instance, Wei and Hoganson [67] and later 
Henderson and Hoganson [68] developed a learning-based 
dynamic programming solution heuristic to address spatial 
forest management problems efficiently. Their approach 
decomposes the problem into smaller sub-problems, using 
windowing techniques to avoid dimensionality issues and 
accelerate solution search times. Parameters such as size, 
direction, and overlap define each sub-problem, aiming to 
comply with core area constraints over time and create large 
contiguous patches of adjacent stands as habitat. They incor-
porate a learning-based strategy to improve future problem 
setups based on past solutions, aiming for superior outcomes 
within shorter timeframes while minimizing suboptimal 
results. Their analysis revealed solution outcomes ranging 
from nearly 1% to 32% of the global optimum, considering 
spatial constraints.
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Neto et al. [69] introduced a Monte Carlo tree search 
method to address spatial harvest scheduling, aiming to 
minimize forest fragmentation while maximizing NPV and 
connectivity index. Their multi-objective approach found 
efficient solutions with a slight NPV decrease (5%) but sig-
nificant connectivity index increases (up to 200%). Heinonen 
[70] similarly used graph theory and minimum spanning 
tree (MST) to optimize NPV and habitat connectivity in a 
forest landscape, improving connectivity of broadleaf-rich 
patches with moderate NPV loss. Garcia-Gonzalo et al. 
[45] introduced a technique to incorporate climate change 
uncertainty into harvest planning to optimize NPV across 
various scenarios and spatial restrictions for a 1000-stand 
forest. They utilized the Progressive Hedging (PH) algo-
rithm, similar to Simulated Annealing, breaking down the 
problem into autonomous sub-problems for simpler solving 
[71]. Non-anticipativity constraints (i.e., time consistency) 
were relaxed using a quadratic penalty term in the objective 
function, acting as soft constraints. This approach aimed 
to minimize infeasibilities across different sets of variables 
and climate scenarios. Adjacency constraints were included 
through the "minimum infeasible cluster formulation" with 
the ARM model. The PH-based stochastic programming 
method outperformed deterministic models, achieving 
improved and feasible objective functions with an average 
time savings of 90% and maximum average gaps of 4%.

Some researchers are trying to deal with risk and uncer-
tainty which are rarely regarded as part of spatial forest plan-
ning that would be disrupted by fire, pests, or even on-the-
ground conditions. Murray et al. [72] investigated spatial 
uncertainty in 351 management units, with an average size 
of 12 ha subject to adjacency restrictions to mitigate sedi-
mentation limits, stress on flora and fauna, and degradation 
of the environment. They used some forms of URM type of 
approach with MIP to simultaneously address dispersion, 
disruption, and uncertainty and minimize total uncertainty 
associated with potential adjacency violations in forest plan-
ning. They found that incorporating risks and uncertainty 
would reduce benefits from 17 to 65%.

Similar to SA and TS, cellular automata (CA) are dis-
crete dynamic systems used infrequently in spatial forest 
planning. CA involves a grid of stands that change over dis-
crete time intervals following specific rules based on their 
present condition and neighboring stands. Zeng et al. [73] 
utilized CA to minimize wind damage risk in forest plan-
ning, considering stand composition and spatial configura-
tion. They developed a model to minimize wind damage by 
arranging clear-cuts next to opening gaps, reducing vulner-
able stand edges. Although CA yielded lower harvest levels, 
it effectively minimized wind damage. Similarly, Mathey 
et al. [74] developed a computationally efficient CA algo-
rithm to maximize cumulative harvest volume and clus-
tered late-seral forests, demonstrating a trade-off between 

objectives. Their results highlighted sensitivity to local and 
strategic constraints, comparable to SA search. Pascual et al. 
[75] examined the impact of harvesting costs on distribu-
tion using the dynamic treatment units (DTUs) approach 
to optimize NPV and enhance treatment clustering using 
CA heuristic. They observed that maximizing NPV favored 
final harvesting over thinning, positioning harvest blocks 
near forest roads, and creating more compact DTUs com-
pared to plans focused solely on timber production. Compact 
harvest blocks were achieved by minimizing the proportion 
of cut-uncut boundaries, while an aggregated landscape 
was achieved by maximizing cut-cut boundaries between 
treatment units. Furthermore, CA outperformed SA with an 
increasing number of spatial units.

Ant colony optimization (ACO), inspired by the forag-
ing behavior of ants, uses artificial ants to build solutions and 
reinforce paths based on pheromone levels, eventually con-
verging to optimal or near-optimal solutions. Infrequently 
applied in forest planning, the ACO algorithm was put to 
the test in optimizing the harvesting patterns within a forest 
landscape. The primary objectives were to minimize the risk 
of wind damage and ensure a sustainable and consistent flow 
of periodic harvests, as demonstrated in the study by Zeng 
et al. [76]. In comparison to SA and TS, ACO exhibited logi-
cal performance, consistently maintaining a relatively even 
distribution of periodic timber harvesting while minimizing 
the risk of wind damage. However, similar to other heuristic 
algorithms, the sensitivity of ACO to parameters governing 
pheromone updates and schedule selection was notable.

Nonetheless, the prevailing consensus indicates that SA 
has demonstrated comparable performance to TA, Great 
Deluge (GD), Ga and TS with 1-opt and 2-opt moves. As 
stated by a number of researchers heuristic methods may 
well be combined with exact techniques to generate a new 
method where the exact techniques can be used for solv-
ing the non-spatial dimension, and the heuristic methods 
are used for solving the spatial dimension of the problems. 
Most of the researchers indicated that heuristics used in 
solving aspatial forest management problem are sensitive to 
the search reversion rates, decision choices (n-opt moves), 
parameters used and the problem characteristics.

While less commonly utilized in spatial forest modeling, 
other operational research techniques such as neural 
networks, artificial intelligence, and game theory show 
promise in addressing spatially oriented forest management 
problems. For instance, Yemshanov et al. [11] developed a 
novel modeling approach integrating habitat connectivity 
and timber production in forest management planning using 
a Stackelberg game-theoretic approach for woodland caribou 
in Ontario, Canada. They formulated a game between policy 
makers and companies, treating it as a bi-level optimization 
problem with seven different combinations of objectives. The 
spatial aspect involved ensuring connectivity of protected 
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habitat patches and accessibility of unprotected patches 
for harvesting, requiring control over the connectivity of 
subnetworks. They highlighted the potential of bi-level 
game-theoretic approaches in spatial forest planning, noting 
a trade-off between protection and harvesting levels.

Spatial Forest Planning with Ecosystem 
Services: Case Studies and Applications

Ecosystem services, the benefits provided by ecosystems, 
are integrated into spatial forest planning in various 
combinations. Wood and non-wood forest products (NWFP) 
are the most prominent services, comprising 40.44% of 
references, indicating a focus on resource utilization and 
sustainable management. Biodiversity conservation follows 
at 33.33%, emphasizing attention to spatial structure and 
forest fragmentation. Climate regulation, particularly 
carbon storage and sequestration, is addressed in 7.11% 
of references, reflecting recognition of forests' role in 
mitigating climate change. Regulatory services, such as 
managing wildfire and wind damage, are discussed in 7.54% 
of references, highlighting concerns for forests' protective 
functions. Multiple ecosystem services are considered in 
9.13% of references, acknowledging their interconnectedness 
and the need for holistic management. Water provision, 
erosion prevention, and cultural services each constitute 
smaller percentages, reflecting specific but less emphasized 
aspects. Overall, the diverse range of ecosystem services 
addressed in the literature underscores the multifaceted 
considerations in spatial forest management planning.

Spatial Constraints (Biodiversity Conservation)

Biodiversity conservation has been handled with a number 
of proxy indicators such as opening size, adjacency, core 
area and connectivity, mainly representing various aspects 
of spatial forest structure [76, 78]. In fact, quantifying, meas-
uring and modeling landscape pattern or structure has long 
been the primary focus of spatial forest planning. Many 
researchers have focused on restoring habitat connectiv-
ity, reducing habitat fragmentation, and preserving suitable 
old growth habitats to establish spatial forest integrity [10, 
17, 34, 44, 79, 80]. Both the exact models and heuristics 
have been used to generate solutions to control landscape 
fragmentation and establish spatial integrity in a landscape 
through designing harvest scheduling activities.

A green-up or adjacency constraint regulates the time 
interval between harvesting neighboring forest units and 
limits the extent of clear-cutting or unharvested stands. 
While "adjacency" refers to the spatial relationship 
between forest patches, green-up indicates the temporal 
differences between the contiguous forest units. 

While there is a slight or subtle differences between 
adjacency and green-up concepts, both are often used 
interchangeably. In general, however, "adjacency" 
refers to the time difference between harvested units 
in spatial proximity, aiming to maintain a contiguous 
forest landscape and prevent negative ecological 
impacts from edges or boundaries. Different types 
of adjacency concepts include immediate adjacency, 
point-touch adjacency, and distance adjacency, each 
defining various aspects of spatial configurations 
between stands. By combining distance adjacency with 
green-up delay constraints, forest connectivity over time 
can be ensured, creating corridors of width d meters 
connecting unharvested stands [81]. Goycoolea et  al. 
[42••] distinguished between dynamic and static green-up 
constraints, where dynamic constraints enforce adjacency 
at the stand level within the unit restriction model, while 
static constraints operate at the cluster level, requiring 
adjacent stands within a clear-cut area to be harvested 
simultaneously. These constraints mimic model behavior 
and contribute to the planning process.

An alternative definition of adjacency considers both 
spatial and non-spatial attributes. Forest units are deemed 
adjacent if they are within a specified proximity, regardless 
of physical touch. Additionally, stands with thematic attrib-
utes within proximity can form wildlife habitat clusters, like 
old forests or native forests. Minimum area requirements 
for such clusters are often imposed in harvest scheduling 
with adjacency constraints [82]. Unlike the URM, Ríos-
Mercado et al. [83] introduced the green unit restriction 
model (GURM), where nearby native or old forest stands 
are selected as wildlife reserves or protection areas to remain 
standing throughout the planning horizon. The GURM 
adjacency constraint aims to establish a maximum distance 
between native forest stands.

In integrating spatial features into harvest scheduling 
models, algorithms defining adjacency constraints are cru-
cial. Various methods have been developed to minimize the 
number of adjacency constraints within spatial planning 
models like URM and ARM. Spatial relationships among 
stands are stored using adjacency lists and adjacency matri-
ces, each influencing the effectiveness of spatial harvest 
scheduling. Kašpar et  al. [84] introduced four types of 
adjacency matrices, including pairwise constraints from 
an adjacency list, and constraints derived from analytical 
algorithms like triangular adjacency matrices, row adjacency 
matrices, and row triangular adjacency matrices. Comparing 
the time efficiency of solving URM-based harvest sched-
uling models using these matrices, their study found that 
the choice of adjacency constraints significantly impacts 
problem-solving time. Pairwise adjacency constraints from 
a regular adjacency list may suffice for addressing URM-
based harvest schedules.
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Opening size in spatial forest planning refers to the extent 
of forest units scheduled for treatment, whether contiguous 
or adjacent, within the same time period. Modeling tech-
niques for opening size vary, with one approach being the 
URM, where harvesting areas are predetermined based on 
a specific number of adjacent stands and treated as fixed in 
size. Another approach is the ARM, where spatial units are 
dynamically combined into overlapping harvesting blocks 
composed of all adjacent stands within a maximum open-
ing size limit. The ARM model allows harvesting two adja-
cent units if the total harvested area does not exceed the 
desired maximum opening size. However, this approach 
overlooks the maximum width limitation, a legal require-
ment in many countries. Murray [85•] introduced both the 
URM and ARM models. Additionally, the extended area 
restriction model (EARM) has been proposed, where adja-
cency is defined as strong (full adjacency) or weak (half 
adjacency or point-touch adjacency) based on the number 
of shared points between units. While the URM is relatively 
straightforward to solve, the ARM presents challenges in 
formulation and solution. However, researchers have devel-
oped new approaches to enhance solution efficiency. For 
instance, Goycoolea et al. [43] contributed to solutions for 
both ARM and EARM. In ARM-based models, defining 
feasible clusters, or cliques, for harvesting is essential [86]. 
A clique comprises units (stands, cells) that are mutually 
adjacent, termed immediate adjacency. The largest subset of 
mutually adjacent units is known as a "maximal clique," and 
the approach is termed maximal clique-cluster (MCC) for-
mulation. Adjacency constraints are fulfilled by selectively 
harvesting a single viable cluster from the set of feasible 
clusters intersecting each maximal clique. Goycoolea et al. 
[43] emphasized the significance of clique definition and 
utilization, as model performance depends on clique char-
acteristics, with certain sets of cliques outperforming others.

Adjacency and opening size constraints are readily han-
dled in heuristic modeling techniques like simulated anneal-
ing, tabu search, genetic algorithms, and cellular automata in 
a more flexible manner. However, exact modeling methods 
such as integer programming and mixed-integer program-
ming face great challenges due to the NP-hard complexity 
of the spatial forest management problem, making it diffi-
cult to solve in a reasonable time. Goycoolea et al. [43] and 
Goycoolea et al. [42••] attempted to address this challenge 
by formulating adjacency and opening size constraints in 
exact modeling approaches using LP-relaxation through a 
clique representation of a projected problem with integer 
variables. They developed MIP based harvest scheduling 
models subject to maximum area constraints based on the 
EARM approach by projecting strong valid inequalities from 
the node packing problem to the cluster packing problem. 
They also re-defined clusters to be adjacent when within a 
certain proximity, termed distance adjacency. Testing their 

approach on both hypothetical and real case study areas, they 
demonstrated that their tight formulation allowed for the 
"branch and bound" method to solve medium-sized EARM 
instances relatively quickly, achieving solutions within a 1% 
margin of the optimal solution. In their study, Goycoolea 
et al. [42••] investigated three MIP formulations based on 
the ARM concept, applying a static green-up delay con-
cept. The first formulation, termed the Path Formulation, 
involves identifying all possible paths or potential infeasible 
configurations of a harvesting cluster and establishing con-
straints to prevent each of these infeasibilities. Specifically, 
this formulation ensures that the maximum number of stands 
in a cluster harvested in the same period is equal to the total 
number of stands minus one at most. Adjacency constraints 
are imposed for each path, and simultaneous harvesting of 
all stands composing each path (minimally infeasible clus-
ter) is prohibited to ensure a feasible solution. This formu-
lation enforces adjacency restrictions on every path, disal-
lowing the concurrent harvesting of all stands within each 
pathway, forming the minimal infeasible cluster, to obtain 
a feasible solution.

The second formulation, called Cluster Packing Formu-
lation, focused on defining variables for all feasible har-
vesting clusters and imposing constraints to ensure that no 
selected pair of clusters overlapped or shared adjacent stands 
[31]. The third formulation, known as the Bucket Formula-
tion, entailed predefining buckets and assigning stands to 
each bucket in a manner that represented a harvested cluster 
[87]. They applied three formulations in four case forests 
using dynamic green-up delay concept, ensuring all stands 
were harvested once over the planning horizon without 
multiple harvests. The Clique-Cluster Packing formulation 
outperformed Path and Bucket formulations, achieving opti-
mality ranging from 1% to 7.16%, influenced by forest size 
and formulation tightness. Green-up constraints posed chal-
lenges, with varying effects based on the number of green-
up periods constraint. Introduction of volume, ending age, 
and green-up constraints led to encountering some infeasible 
solutions, highlighting formulation sensitivity. Martins et al. 
[88] introduced the connected-bucket model, extending the 
bucket model with additional constraints on bucket connec-
tivity and stand adjacency, using Dantzig-Wolfe decomposi-
tion and finding superior results with the branch-and-price 
approach in most cases.

Augustynczik et al. [89] compared two methods for 
clustering forest harvesting activities in a planning 
model: Minimum Spanning Tree (MST) as integer lin-
ear programming and SA as a heuristic technique. MST 
used graphical representation with stands as vertices and 
connections as edges, while SA considered connectivity 
with an immediate adjacency concept. MST, though more 
time-consuming, offered a precise solution, while SA, with 
quadratic penalty functions, provided a quicker alternative. 
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Testing on a 2365.8-hectare forest with 236 stands, MST 
reduced NPV by 3.9% to 7.3%, while SA reduced it by 
7.6% to 15.4%. Previous SA formulations by Bachmatiuk 
et al. [62] narrowed this gap to 1.9% to 8.7%, suggesting 
a promising alternative for better connectivity, especially 
in larger forest planning problems.

Yoshimoto and Konoshima [35••] proposed a 0–1 inte-
ger programming method for formulating the scheduling 
problem of allowing multiple harvests over time by using 
common matrix algebra. They used the concept of Model 
I formulation to avoid concurrent harvest among adja-
cent units by different treatments. Green-up constraints 
is handled by adding a constraint through modification 
of the activity adjacency element based on two kinds of 
adjacency matrices; one is an ordinary spatial adjacency 
matrix for the forest unit location, and the other is a newly 
introduced activity adjacency matrix to identify concur-
rent harvesting activities in a set of possible treatments 
for one forest unit.

Gharbi et  al. [16] introduced the Full Adjacent Unit 
(FAU) model, a MIP approach combining ARM and URM 
without prior enumeration. FAU utilizes a "full adjacent 
units" constraint per stand to prevent simultaneous harvest-
ing of adjacent stands, ensuring linearity between constraints 
and stand count, reducing problem complexity. Tested on 
real forests, FAU demonstrated insensitivity to forest size 
and structure while generating superior results compared 
to counterparts in terms of model size and solution quality 
[16].

Yoshimoto and Asente [79] developed an exact model 
of focal point aggregation to address connectivity among 
aggregated units in clusters, enhancing connectivity between 
isolated wildlife patches. Focal point aggregation involves 
aggregating a specific unit (focal point) with its adjacent 
units, meeting spatial requirements. They utilized the Max-
imum Flow constrained Model I (MF-Model I) approach 
by Yoshimoto and Asente [79], incorporating area restric-
tions via linkage constraints between temporal and spatial 
features of harvest scheduling. MF-Model I identifies com-
plete connectivity among aggregated units in clusters under 
maximum opening size restrictions, solving spatial issues 
like focal-point aggregation while considering no-harvest 
prescriptions. The number of focal points, periods, and 
minimum habitat size significantly affect optimization and 
computational burden. Incorporating maximum flow con-
straints and spatial constraints addresses spatial challenges, 
but optimal solutions for larger problems within defined 
CPU time frames remain challenging due to exponential 
growth of constraints and integer variables. Despite theoreti-
cal feasibility, practical limitations persist for larger forest 
management problems.

Yoshimoto and Asante [90] addressed inter-temporal unit 
aggregation issues in forest management using modified 

dynamic MF-Model I and MF-Model II approaches with-
out prior enumeration to generate possible clusters (Model 
IV by [91, 92••]). Their method allows spatial units (stands) 
to merge into different clusters (candidate harvest blocks) 
over the planning horizon, termed "inter-temporal aggrega-
tion". This dynamic problem is complex to solve exactly, but 
their proposed approaches incorporate a spatial connection 
module with maximum flow constraints and sequential tri-
angle connection to optimize solutions. They introduced an 
additional module to manage cluster shapes, preventing long 
elongated clusters. While clusters cannot be harvested simul-
taneously (representing a one-period green-up delay), their 
formulation doesn't account for delays exceeding one period 
between clusters. St. John and Tóth [90] suggested that their 
Model IV is compatible with various formulations and com-
putationally viable for spatially explicit harvest scheduling.

Fustel et al. [93] introduced a spatial forest model using 
MIP to minimize wind exposure during storms by reducing 
the susceptibility of edges between adjacent stands. They 
established thresholds for allowable differences between 
neighboring stands and found that it was feasible to reduce 
vulnerable edge length while experiencing moderate reduc-
tions in NPV, leading to clustering of dominant stand heights 
among neighboring stands. In a recent study, Ríos-Mercado 
et al. [83] formulated a forest harvesting problem with adja-
cency and environmental constraints based on the extended 
URM model (GURM) using IP. They tested the effects of 
parameters such as distance between harvested units, tim-
ber volume, green-up period, and minimum forest reserve. 
They found that maximum area inversely affected the URM 
and GURM models, with larger regions resulting in reduced 
profit and time.

Climate Regulation, Carbon Stock and Sequestration

The review also touches upon the incorporation of climate 
change in spatial forest planning, emphasizing the need to 
balance wood production with carbon storage and seques-
tration. Incorporating climate change concerns into spatial 
forest planning is essential as management interventions 
and spatial constrains (e.g., adjacency and opening size) 
and resultant spatial patterns directly influence growing 
stock or biomass levels and, consequently, carbon storage. 
Despite the significance of this issue, only around 7% of the 
literature reviewed specifically addressed climate regulation 
in spatial planning. Dong et al. [14, 65] and Qin et al. [5] 
utilized neighborhood search techniques within the Simu-
lated Annealing heuristic framework to explore management 
activities maximizing timber production and carbon stocks 
while adhering to constraints like maximum harvest opening 
size and even-flow timber requirements. Their findings sug-
gested significant potential for carbon stock increases over 
the next 30 years, with average carbon density rising by the 
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end of the planning horizon across different initial age class 
structures. Garcia-Gonzalo et al. [45] pioneered integrat-
ing climate change uncertainty into spatial harvest planning 
using PH and ARM methods to optimize NPV under 32 
climate change scenarios and spatial adjacency restrictions. 
The review highlights the effectiveness of incorporating 
climate change uncertainty into spatial forest manage-
ment planning, with the PH-based stochastic programming 
methodology demonstrating superiority over deterministic 
models. Marto et al. [94], Marques et al. [39], and Marques 
et al. [40, 41] integrated carbon sequestration, wood pro-
duction, and biodiversity conservation into spatial forest 
planning using various decision support approaches such 
as MIP, GP and MCDA. They presented trade-offs among 
ecosystem services in a Pareto Frontier, showing that maxi-
mizing average carbon stock and biodiversity often comes 
with a lower net present value. Qin et al. [5] examined the 
effects of carbon prices on trade-offs between forest carbon 
and timber management objectives, demonstrating through 
Simulated Annealing metaheuristic that higher carbon prices 
led to an increase in non-harvested units and a decline in 
harvested units with alternative prescriptions while main-
taining a consistent total percentage of harvested units due 
to even flow constraints. They basically demonstrated the 
effects of carbon-prices on the optimal spatial and tempo-
ral assignments of alternative management prescriptions by 
considering adjacency constraints of assigned management 
prescriptions.

Others (Water Provision, Erosion Control 
and Recreation)

The integration of various ecosystem services in spatial 
forest planning is essential for ensuring sustainable forest 
management. Forest planners are adopting holistic strate-
gies to balance timber harvesting with preserving soil integ-
rity, enhancing water resources, and providing recreational 
services. This approach addresses economic goals while 

fostering resilience and well-being in forest ecosystems. 
However, the review found that studies incorporating water 
provision, erosion prevention, and cultural services in spatial 
forest planning are limited, comprising less than 4% of the 
literature (Fig. 3). Fotakis et al. [53] introduced an innova-
tive method that integrated soil preservation into timber pro-
duction using genetic algorithms. They strategically located 
old forest stands along the stream network to mitigate sedi-
mentation while optimizing timber harvest, demonstrating 
trade-offs between timber harvest and soil conservation. In 
contrast, Rodrigues et al. [95] integrated timber production 
and soil erosion but did not address spatial characteristics for 
soil erosion prevention or timber yield optimization. None of 
the studies developed a decision support system to control 
the spatial arrangement of forest stands for water provision. 
Nevertheless, recent studies by Lundholm et al. [20], Knoke 
et al. [96], and Botequim et al. [80] have emphasized the 
importance of recreation, water provision, and quality in 
traditional forest management planning. While these stud-
ies provide valuable insights into forest multi-functionality, 
they overlook detailed spatial management strategies, high-
lighting a gap in current research methodologies. There is 
a pressing need for comprehensive spatial forest planning 
models that go beyond generic trade-offs and incorporate 
nuanced spatial control measures. These measures are cru-
cial for achieving a delicate balance among soil preserva-
tion, water provision, recreation, and timber production, 
ultimately ensuring the long-term health and resilience of 
forest ecosystems.

Regulating Services (Forest Fire and Wind)

In forest fire management, fuel treatments and fires can inter-
act with each other across both time and space. However, the 
planning of fuel treatment activities poses complicated deci-
sion-making problems with spatial and temporal dimensions 
[8, 47, 48]. Forest management planning approaches need to 
treat potential fire loss estimates as indigenous parameters 

Fig. 3   The distribution of the 
number of publications accord-
ing to the ecosystem services
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[7]. They developed a methodology based on fire occur-
rence, suppression, and spatial spread models, a fire protec-
tion value model that identifies crucial stands, the harvesting 
of which can have a significant influence on the spread of 
fires across the landscape, and a spatially explicit timber 
harvest scheduling model. Based on the method, they dem-
onstrated that integrated fire—forest management planning 
could result in an 8.1% increase in NPV when compared 
with traditional planning [7].

Troncoso et al. [97] developed spatially explicit URM 
based harvest scheduling models aimed at maximizing har-
vesting volume while considering adjacency constraints on 
flammable landscapes to reduce fire risks. They utilized a fire 
threat index constructed by analyzing spatial relationships 
between stands to identify stands at higher risk of fire or those 
capable of reducing potential volume losses from fire damage. 
Integrating this index into their analysis resulted in notable 
benefits: a more than 1% increase in total harvested volume, 
a 19% growth in standing volume, and an 18% decrease in the 
total area affected by fire. The study highlighted the sensitivity 
of results to landscape structure, with a diverse distribution of 
ignition probabilities across heterogeneous landscapes lead-
ing to a more significant increase in final volume compared 
to cases with more evenly distributed ignition probabilities in 
homogeneous forest areas.

Altamimi et al. [98] introduced an innovative artificial 
intelligence modeling approach called Deep Reinforcement 
Learning (DRL) for dynamic decision-making problems. 
Based on traditional reinforcement learning which is a type 
of machine learning paradigm where an agent learns to make 
decisions by interacting with an environment, DRL utilizes 
neural networks to learn through direct interaction with the 
environment, updating Q-functions with on-policy and off-
policy approaches to address the curse of dimensionality 
[98]. They developed a DRL-based forest model to prevent 
and mitigate wildfire risks by determining efficient manage-
ment policies considering factors such as timber volume, 
flammability, and wind direction. Results showed that the 
DRL policy closely resembled the exact optimum Markov 
decision process solution and outperformed GA solutions as 
benchmarks for large-scale model policies. DRL is praised 
for its ability to estimate near-optimal policies even for com-
plex problems with a high number of possible decisions.

In their recent work, Ferreira et al. [9] focused on spatial 
optimization in forest management by integrating a wild-
fire resistance index into MIP formulations. Their approach 
addressed the flammability of individual stands and land-
scape features impacting fire spread between neighboring 
stands, utilizing clear-cut openings based on ARM with 
a path formulation to represent full adjacency. However, 
they encountered challenges in reaching optimal solutions, 
prompting them to explore alternative methods such as using 
minimal unfeasible clusters and barrier clusters. Belavenutti 

et al. [99] developed a spatial optimization algorithm using 
a multi-criteria distance function and breadth-first search to 
prioritize forest and fuel management treatments in a linear 
fuel break network in a Western US national forest. They 
analyzed 13 implementation scenarios considering wildfire 
hazard, treatment costs, and harvest revenues. Their findings 
showed that prioritizing wildfire encounter rate and optimiz-
ing large fuel break networks led to reduced net revenue 
and harvested timber, highlighting the trade-offs inherent in 
wildfire management strategies.

Challenges and Future Directions

Spatial forest harvest scheduling is a complex management 
task influenced by various factors including diverse forest 
owner interests, competing objectives, and the consideration 
of multiple ecosystem services. The process requires exten-
sive spatial data and incorporates new spatial requirements 
such as habitat connections and riparian buffers. Managing 
spatial information introduces uncertainty, especially regard-
ing spatial distribution, location, and boundaries of harvest 
units and habitat patches. Wei and Murray [46] highlighted 
the sensitivity of URM to spatial data uncertainty, indicating 
challenges in spatial forest planning. Persistent challenges 
in spatial forest planning include addressing evolving com-
plexities and developing effective spatial harvest scheduling 
models. Future research should focus on innovative solu-
tions to enhance the effectiveness of spatial forest models, 
addressing challenges, and identifying research priorities in 
forest management planning.

•	 Challenges related to spatial data and its sources: 
Database development is crucial for spatial forest mod-
eling but is often neglected in planning efforts, resulting 
in deficiencies. Research advocates for integrating high-
resolution spatial data from remote sensing and LiDAR 
into harvest scheduling models to improve spatial accu-
racy. Modern technologies like remote sensing and oper-
ational research offer novel spatial planning techniques. 
Integration of spatial optimization models with tree-level 
data enables tree selection based on economic and spatial 
criteria, while representing trees as polygons facilitates 
spatial optimization by minimizing perimeter boundaries 
and adhering to adjacency constraints [100].

•	 Spatial scale and complexity: Navigating spatial con-
siderations involves managing hierarchical planning 
frameworks and multi-level decision-making structures. 
Addressing spatial scaling and cross-boundary concerns 
requires seamless coordination across diverse regions 
and jurisdictions. Coping with spatial heterogeneity and 
evolving landscapes poses challenges, necessitating agile 
planning approaches for effective adaptation.
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•	 New solution techniques: Emerging technological 
advancements, such as cloud computing, AI, DRL, and 
game theory, are being combined with spatial DSS to 
address forest modeling and planning challenges. The 
Internet of Things (IoT) presents opportunities to inte-
grate spatial information into automated systems, espe-
cially in forest modeling applications. Cloud computing 
expands access to advanced DSS for previously under-
served user groups. Object-oriented design facilitates the 
creation of flexible and adaptable DSS. Future challenges 
involve hybridizing various metaheuristics and exact 
algorithms, augmented by artificial intelligence [98] 
and strategies like self-adaptation and iterative sched-
uling techniques, to optimize decision-making in forest 
planning [54•, 56, 101].

•	 International conventions and guidelines: International 
initiatives like forest certification programs and the Euro-
pean Green Deal establish spatial constraints to promote 
responsible forest stewardship. Guidelines emphasize stra-
tegically distributing forest patches and corridors to preserve 
ecological diversity, while regulating openings near biologi-
cal reserves to safeguard conservation areas [102–104].

•	 Integration of multiple objectives with multiple eco-
system services: Future research should focus on inte-
grating a broader range of ecosystem services as manage-
ment objectives in spatial harvest scheduling models. This 
includes biodiversity conservation, carbon sequestration, 
wildfire prevention, water quality, and aesthetic-recreation, 
all considered simultaneously. Developing multi-objective 
optimization frameworks and associated spatial planning 
models will aid in understanding the trade-offs and syner-
gies among these conflicting goals [40].

•	 Climate change adaptation: Incorporating climate 
change impacts into spatial harvest scheduling models is 
essential. More research should aim to develop climate-
resilient spatial planning strategies and assess how chang-
ing climate conditions affect forest growth, disturbance 
regimes, spatial forest pattern and the ecosystem services.

•	 Dynamic models: Moving beyond static models, future 
research should emphasize dynamic spatial harvest 
scheduling models. These models should account for 
changing forest conditions over time, including forest 
growth, disturbance events (e.g., wildfires, insect out-
breaks), and land-use changes.

•	 Uncertainty Analysis: Effective methods for quantify-
ing and addressing uncertainty in spatial harvest sched-
uling models are needed. This includes incorporating 
stochastic modeling techniques and conducting sensi-
tivity analyses to assess the robustness of scheduling 
decisions to various sources of uncertainty. While some 
initiatives account for wildfire into spatial modeling [7, 
8, 97], the spatial forest models should fully incorpo-
rate the catastrophic and spatially-contagious effects 

of natural disturbances such as wildfire, storm and 
insect out-break as they are spatially progressing sto-
chastic events. One alternative strategy would involve 
the development of fire-smart landscape pattern, which 
entail the optimal layout of fuel breaks and the integra-
tion of fire-resisted forest stands spatially arranged with 
other forested areas to enhance overall fire resilience 
and mitigation in fire-prone forest ecosystems.

•	 Spatial optimization algorithms: The pursuit of pro-
gress in optimization algorithms, encompassing diverse 
search techniques and meticulous parameter determina-
tion effort, especially within the realm of metaheuris-
tics such as genetic algorithms, simulated annealing, 
and tabu search, should be actively undertaken. This 
exploration effort should be directed towards enhancing 
the efficiency and precision of addressing the formi-
dable challenges posed by large-scale spatial harvest 
scheduling problems, bringing us closer to attaining 
solutions that approach the global optimum.

•	 Operational constraints: Consideration of operational 
constraints, such as road networks, fire breaks, equip-
ment limitations, and budgetary constraints, is crucial. 
Models should account for these practical yet spatial 
factors to ensure the feasibility of on-the-ground sched-
uling solutions to spatial planning.

•	 Policy alignment: Management policies and thus 
guidelines should ensure the clear definition and incor-
poration of spatial requirements embedded in the sus-
tainability standards (i.e., green certification) in harvest 
scheduling models.

•	 Multi-stakeholder engagement: There is a need for 
the integration of methods to address landscape func-
tions and processes across various land-use sectors 
(forestry, agriculture, terrestrial water, and urban areas) 
in order to engage stakeholders in spatial landscape 
planning with a wider spatial characteristics consid-
ered. Developing sound governance models and tools 
that facilitate collaborative decision-making among 
diverse stakeholders, including forest owners, com-
munities, and conservation organizations, is essential 
in effective spatial forest modeling process. Ensuring 
that the interests and concerns of all parties including 
the indigenous and local knowledge systems are incor-
porated into harvest scheduling decisions that is crucial 
for sustainable forest management.

•	 Capacity building: Invest in training and capacity-build-
ing programs to equip forest managers and researchers 
with the skills and knowledge needed to apply advanced 
spatial harvest scheduling models effectively.

•	 Real-time DSS: Developing real-time DSS that can 
adapt spatial harvest scheduling plans based on emerging 
information and changing conditions. Real-time spatial 
forest model would be possible with the improved data 
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sharing and interoperability, real-time monitoring and 
adaptive spatial planning approach which involves the 
dynamic and flexible management of forest landscape in 
response to changing environmental conditions, societal 
needs, and stakeholder preferences.

Discussion and Conclusion

The paper presents a thorough review of any scientific 
papers dealing particular with spatial aspects in forest man-
agement planning, focusing on spatial forest modeling and 
analytical solution techniques. It examines various spatial 
features such as harvest block size, adjacency requirements, 
core areas, habitat connectivity, and fire spread. Analytical 
solution methods, including exact and heuristic approaches, 
are discussed, alongside case studies assessing their per-
formance. Recent advancements in spatial forest modeling, 
particularly in exact solution techniques, are highlighted, but 
the importance of heuristic techniques for real-world prob-
lems is also emphasized. The paper highlights the ongoing 
advocacy for heuristic techniques in addressing large-scale, 
real-world problems in spatial forest planning, especially 
concerning multiple ecosystem services and constraints. It 
highlights further the potential of artificial intelligence to 
overcome computational constraints to the use of both exact 
and heuristic techniques. It emphasizes the integration of 
regulating, supporting, and cultural services in objective 
functions, beyond provisioning services. The paper iden-
tifies emerging requirements and unresolved challenges in 
spatial forest planning, concluding with critical future devel-
opments such as hybrid modeling techniques, quantifying 
landscape fragmentation, and comprehensive characteriza-
tion of various forest ecosystem services. Additionally, it 
underscores the growing enthusiasm in the field to imple-
ment innovative approaches for enhancing sustainability and 
effectiveness in spatial forest modeling initiatives.

The philosophy of ecosystem management planning 
underscores the importance of understanding ecosystem ser-
vices, forest patch/stand characteristics, and decision-mak-
ing techniques for sustainable forest ecosystem management. 
This approach relies on real-time spatial data and integrates 
landscape indicators/metrics into the planning framework. 
Spatial planning is crucial within this framework, aiming 
to regulate the spatial arrangement of the forest landscape 
to sustain desired ecosystem services while meeting stake-
holder requirements. Establishing structural management 
objectives, defining spatial interventions, and quantifying 
spatial requirements are essential for selecting appropriate 
solution techniques, understanding forest dynamics, and 
controlling spatial patterns using performance indicators.

Understanding spatial dynamics is crucial for informed 
decision-making in forest management, enabling the 

formulation of effective solutions applicable on the ground. 
Leveraging spatial modeling tools helps understand the 
causal basis of management interventions and their conse-
quences on forest structure and goals. A holistic systems 
approach is essential, synthesizing inductive and deductive 
reasoning to establish a scientific framework and explore 
spatial relationships among management objectives, includ-
ing ecosystem services. The challenge lies in determining 
optimal spatial arrangements across landscapes to maximize 
multiple objectives while ensuring resilience to natural dis-
turbances. Future research aims to uncover ecologically 
stable forest configurations that meet diverse management 
objectives sustainably, balancing public demands with eco-
system conservation.

As for the modeling techniques, both exact and heuristic 
solution techniques have been successfully used in spatial 
forest planning. The performance and the successful use of 
various analytical solution techniques highly depend on the 
robust architectural design and formulation of the spatial 
features/characteristic in exact solution techniques and in 
the case of heuristics is quite sensitive to the types of deci-
sion choices or moves, system functions and parameters used 
within the model. Utilizing heuristic search is commonly 
recommended in situations where the abundance of deci-
sion variables can lead to spatial problems of substantial 
magnitude within the feasible region [74]. Heuristic search 
techniques are both fast and efficient in generating solu-
tions, even when dealing with numerous small-scale forest 
units [105]. These techniques are quite flexible that facili-
tate alternative formulations of the planning problems and 
interpretation of the results. Nonetheless, the proximity of 
the near-optimal solutions to the global optimum and the 
requirements for parameterization consistently introduce 
uncertainty when assessing the quality of heuristic-gener-
ated solutions as compared to exact modeling techniques 
[106]. In the meantime, they do not guarantee to optimize 
management objectives due mainly to their inability to 
explore all the possible options in a given simulation time 
and to make inter-temporal trade-offs among the alterna-
tives. There are, however, certain areas to improve the per-
formance of metaheuristics in spatial forest planning as 
hinted by Bettinger and Boston, [107••] and Baskent et al. 
[26]. These include hybridization with exact models, pro-
cess improvements, reversion strategies, destruction and 
reconstruction strategies, intelligent or dynamic parameteri-
zation approaches, intelligent termination or transitioning 
approaches, and seeding strategies.

Great improvements have been observed since 2005 in 
formulating various modifications of URM and ARM based 
harvest scheduling problems with the exact approaches to 
represent and solve spatial planning problems with a rela-
tively reasonable size of forests in a reasonable computa-
tion time [35••, 42••, 43, 79]. In fact, exact approaches are 
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unique, systematic and mathematically rigorous in formu-
lating spatial forest management problems as they seek and 
find the optimal solution. They are excellent models for 
small-sized forest management problems with fewer con-
straints and decision variables, such as ecosystem services 
and requirements. However, as problem size and the num-
ber of ecosystem services and spatial constraints increase, 
solving larger forest management problems becomes chal-
lenging and computationally burdensome. Real-large for-
est problems involving various spatial requirements like 
habitat connectivity, core area, harvest block size, and 
adjacency constraints may be impossible to solve within a 
reasonable computational time. Therefore, it is crucial to 
recognize that hybridization or integration of heuristics and 
the exact approach offers significant benefits to research-
ers involved in both heuristic and exact modeling domains 
[56, 79, 108]. The use of hybrid techniques is still rare yet 
gaining importance particularly in the context of collective 
decision-making, focusing on the robustness and simplicity 
[54•, 109]. A solution achieved through heuristics holds the 
potential to be scrutinized through the prism of the exact 

method, harnessing optimal metrics such as a gap. Like-
wise, the exact methodology can capitalize on an integer-
feasible solution originating from heuristics, employing it 
as an initial starting point. This strategic move expedites 
the pursuit of a conclusive solution, all the while achieving 
computational efficiency. The general solution in developing 
solution techniques would seem to proceed on three alterna-
tive paths; the development and use of increasingly more 
sophisticated meta-heuristic solution techniques, approaches 
and development of alternative mathematical formulations 
by exact optimization methods and/or inventing totally new 
solution techniques such artificial intelligence (e.g., as deep 
reinforcement learning [11, 98].

In conclusion, this review paper provides a comprehen-
sive review regarding the state of the art in spatial forest 
planning and outlines some future directions to improve its 
effectiveness in the sustainable management and conserva-
tion of ecosystem services. The synthesis of knowledge pre-
sented here aims to contribute to the advancement of spatial 
forest planning strategies and their integration into sustain-
able management of forest ecosystems.

Annex 1 

 List of scientific papers with decision-making methods and ecosystem services in spatial forest planning (*)

Authors Year Class of methods Types of 
methods(**)

Ecosystem ser-
vices (***)

Type of 
Paper

Type of problem

Accastello et al 2017 Heuristic method BEA, MCDA WP Research Harvest scheduling
Acuna et al 2010 Heuristic method Spatial spread 

model
WP and RS/WF Research Fire spread

Altamimi et a 2022 Exact/heuristic method DP and DRL WP and RS/WF Research Wildfire risks
Anonymous 2013 N/A N/A BC Concept Habitat connectivity
Augustynczik et al 2016 Exact/heuristic method IP and SA WP and BC Research Stand connectivity
Bachmatiuk et al 2015 Exact/heuristic method MIP and SA WP and BC Research Adjacency, opening size
Badilla et al 2015 Heuristic method MIP and PH WP and BC Research Road network, uncer-

tainty
Baskent 2018 N/A N/A MES Review Spatial pattern
Baskent and Jordan 2002 Heuristic method SA WP and BC Research Adjacency, opening size
Baskent and Jordan 1995 N/A N/A MES Concept Concept
Baskent and Keles 2005 N/A N/A WP and BC Review Spatial pattern
Baskent et al 2008 N/A N/A MES Concept Spatial pattern
Baskent 2020 N/A N/A MES Concept Spatial pattern
Baskent et al 2020 N/A N/A MES Concept Spatial pattern
Belavenutti et al 2023 Heuristic method Fuel treatment MES Review Fuel management
Belavenutti et al 2018 Exact method LP WP Research Harvest scheduling
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Authors Year Class of methods Types of 
methods(**)

Ecosystem ser-
vices (***)

Type of 
Paper

Type of problem

Bettinger and Boston 2017 Heuristic method TS WP and BC Research Adjacency, opening size
Bettinger and Zhou 2006 Heuristic method TS WP and BC Research Adjacency, opening size
Bettinger et al 2015 Heuristic method TS WP and BC Research Adjacency, opening size
Bettinger et al 2007 Heuristic method TS WP and BC Research Adjacency, opening size
Bettinger et al 2003 Heuristic method TA WP and BC Research Adjacency, opening size
Bettinger et al 2002 Heuristic method SA, TA, GD, TS, 

GA
WP and BC Research Adjacency, opening size

Bixby et al 2019 Exact method DP WP and BC Research Core area of old forest
Blanco and Lo 2023 N/A N/A MES Review Spatial pattern
Blum et al 2011 N/A N/A MES Review Spatial pattern
Borges et al 1999 Exact/heuristic method DP WP, BC Research Adjacency, opening size
Borges et al 2017 Exact method LP, Pareto Frontier WP, CR/C, 

NWTP
Research Adjacency, opening size

Borges et al 2017 Exact method IP WP and BC Research Adjacency, opening size
Borges et al 2015 Exact method IP WP and BC Research Green-up, max. area
Borges et al 2014 Heuristic method SA WP, CR/C, 

NWTP
Research Green-up, opening size

Boston and Bettinger 2006 Exact method LP WP and BC Research Adjacency, opening size
Botequim et al 2021 Exact/heuristic method LP, Pareto Frontier WP, BC, WR, 

CR/C
Research Product flow

Carvajal et al 2013 Exact method IP WP and BC Research Connectivity
Chen et al 2022 Exact method LP WP and BC Research Habitat Quality, green-up
Constantino et al 2008 Exact method MIP WP and BC Research Green-up, max. area
Cyr et al 2017 Exact/heuristic method SA and MIP WP, BC, RS/WF Research Adjacency, opening size
De Pellegrin et al 2017 N/A N/A MES Review Spatial pattern
Dong et al 2020 Heuristic method SA WP and BC Research Adjacency, opening size
Dong et al 2018 Heuristic method SA WP and BC Research Adjacency, opening size
Dong et al 2018 Heuristic method SA WP, BC, CR/C Research Adjacency, opening size
Dong et al 2016 Heuristic method SA WP and BC Research Adjacency, opening size
Dong et al 2015 Heuristic method SA WP and BC Research Adjacency, opening size
Dong et al 2015 Heuristic method SA WP, BC, CR/C Research Adjacency, opening size
Eyvindson et al 2017 Exact method GP WP and BC Research Hierarchical scheduling
Ezquerro et al 2016 N/A N/A WP and BC Review Landscape pattern
Ferreira et al 2023 Exact method MIP WP, BC, RS/WF Research Wildfire resistance
Fotakis et al 2012 Heuristic method GA WP, EP Research Soil loss, water quality
Franca et al 2022 N/A N/A MES Review Landscape pattern
Fustel et al 2021 Exact method MIP WP and CR/W Research Wind exposure
Garcia-Gonzalo et al 2020 Exact method PH WP and CR/C Research Climate change uncer-

tainty, Adjacency
Gharbi et al 2019 Exact method MIP WP and BC Research Adjacency, opening size
Goycoolea et al 2020 Exact method MIP WP and BC Research Adjacency, opening size
Goycoolea et al 2009 Exact method MIP WP and BC Research Adjacency, opening size
Gunn and Richards 2005 Exact method IP WP and BC Research Adjacency, opening size
Heinonen, 2019 Heuristic method SA WP and BC Research Adjacency, opening size
Henderson & Hoganson 2021 Heuristic method DP WP and BC Research Core area, connectivity
Hoganson and Rose 1984 Exact/heuristic method LP, Lagrangean 

relax
WP Research Harvest scheduling

IPCC 2007 N/A N/A CR/C and CR/C Concept Landscape management
IUCN 2008 N/A N/A BC Concept Landscape management
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Authors Year Class of methods Types of 
methods(**)

Ecosystem ser-
vices (***)

Type of 
Paper

Type of problem

Jin and Pukkala 2016 Heuristic method SA, TA, GD, TS, 
GA, AC

WP and BC Research Adjacency, opening size

Kangas et al 2015 N/A N/A MES Concept Multi criteria problem
Kašpar et al 2016 Exact method IP WP and BC Research Adjacency
Kaya 2016 N/A N/A MES Review Adjacency, opening size
Knoke et al 2021 N/A N/A WP, BC, WR, 

CR/C, CS/Rec
Review Landscape pattern

Li et al 2010 Heuristic method SA, TA, TS WP and BC Research Adjacency, opening size
Lohmander et al 2022 Heuristic method Multiple regression RS/WF Research Fire behavior
Lu and Eriksson 2000 Heuristic method GA WP and BC Research Adjacency, opening size
Lundholm et al 2020 Exact method LP, GP WP, BC, CR/C 

RS/WD, WR, 
CS/Rec

Research Adjacency, opening size

Marques et al 2021b Exact method LP, Pareto 
Frontier,AHP

WP, BC, RS/WF, 
EP

Research Adjacency, opening size

Marques et al 2020 Exact method LP, Pareto Frontier WP, BC, CR/C, 
WD, RS/WF

Research Adjacency, opening size

Marques et al 2021a Exact method MIP, Pareto Fron-
tier

WP, BC, CR/C, 
WD, RS/WF

Research Adjacency, opening size

Martins et al 2017 Exact method IP WP and BC Research Adjacency, opening size
Martins et al 2022 Exact method MIP WP and BC Research Adjacency, opening size
Marto et al 2018 Exact/heuristic method MIP, LP, GP, 

Pareto Frontier, 
AHP, SMART​

WP, BC, CR/C Research Adjacency, opening size

Mathey et al 2007 Heuristic method CA WP and BC Research Adjacency, opening size
McDill et al 2016 Exact method LP and IP WP and BC Research Adjacency, opening size
McGarigal, 1995 N/A N/A MES Concept Adjacency, opening size
Minas et al 2014 Exact method MIP WP and RS/WF Research Adjacency, opening size
Mohammadi et al 2022 Heuristic method Multiple regression RS/WF Research Fire spread
Murray et al 2019 Exact method MIP WP, RS/WF, EP, 

BC
Research Green-up, max. area

Murray, 1996 Exact method MIP WP and BC Research Green-up, max. area
Murray, 1998 Exact method MIP WP and BC Research Green-up, max. area
Neto et al 2020 Heuristic method Monte-Carlo simu-

lation
WP and BC Research Adjacency, opening size

Neto et al 2013 Exact method MIP WP and BC Research Adjacency, opening size
Öhman and Eriksson 2010 Exact method MIP WP and BC Research Adjacency, opening size
Pascual et BC 2018 Heuristic method CA WP and BC Research Adjacency, opening size
Pascual, 2021 Exact method MIP WP and BC Research Adjacency, opening size
Pellerin et al 2010 N/A N/A MES Review Landscape pattern
Pukkala et al 2009 Exact/heuristic method IP, SA, CA WP and BC Research Adjacency, opening size
Qin et al 2017 Heuristic method SA WP and CR/C Research Adjacency, opening size
Rempel et al 2016 N/A N/A WP and CR/C Concept Landscape pattern
Ríos-Mercado et al 2023 Exact method IP WP and BC Research Adjacency, opening size
Rodrigues et al 2021 Exact method IP WP and EP Research Adjacency, opening size
Shan et al 2009 N/A N/A MES Review Landscape pattern
St. John and Tóth 2015 Exact method IP WP and BC Research Adjacency, opening size
Stanojević et al 2015 Exact/heuristic method IP and GA N/A Research Landscape pattern
Tóth and McDill 2007 Exact method IP WP and BC Research Adjacency, opening size
Tóth et al 2013 Exact method IP WP and BC Research Adjacency, opening size
Troncoso et al 2016 Exact method MIP WP and RS/WF Research Adjacency, fire spread
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Authors Year Class of methods Types of 
methods(**)

Ecosystem ser-
vices (***)

Type of 
Paper

Type of problem

Wei and Hoganson 2021 Heuristic method DP-based WP and BC Research Adjacency, opening size
Wei and Murray 2015 Exact method MIP WP and BC Research Adjacency, opening size, 

uncertainty
Yemshanov et al 2021 Exact/heuristic method LP, Game theory WP and BC Research Contiguous habitat
Yoshimoto and Asente 2021 Exact method MIP WP and BC Research Adjacency, opening size
Yoshimoto and Asente 2019 Exact method MIP WP and BC Research Adjacency, opening size
Yoshimoto and Asente 2018 Exact method MIP WP and BC Research Adjacency, opening size
Yoshimoto&Konoshima 2016 Exact method MIP WP and BC Research Adjacency, opening size
Yoshimoto et al 2018 N/A N/A WP, BC, CR/C Review Landscape pattern
Yoshimoto, 2020 Exact method MIP WP and BC Research Adjacency, opening size
Zeng et al 2010 Heuristic method CA WP, RS/WD Research Adjacency, wind damage 

risk
Zeng et al 2007 Heuristic method AC WP, RS/WD Research Adjacency, wind damage 

risk
Zhu and Bettinger 2007 Heuristic method Raindrop method WP and BC Research Adjacency constraints

*) This list isn't exhaustive; instead, it comprises a carefully curated selection that specifically emphasizes the spatial aspects of forest manage-
ment, particularly focusing on modeling techniques.
**) LP: Linear programming, IP: Integer programming, DP: Dynamic Programming, MIP; Mixed integer programming, SA: Simulated Anneal-
ing, TS: Tabu search, GA: Genetic algorithm, TA: Threshold accepting, CA: Cellular automata, AC; Ant colony optimization, GD: Great deluge, 
BEA: Block Exploitation Aptitude, MCS: Monte-Carlo simulation, DRL: Deep reinforcement learning: Others (raindrop, simulation, progres-
sive hedging, fuel modeling, multiple regression, block exploitation aptitude), N/A: Nat available
***) WP: Wood production, BC: Biodiversity conservation, CR/C: Climate regulation (carbon storage/seq.), MES; Multiple ecosystem services, RS/
WF, WD: Regulatory services (wildfire, wind damage), WR: Water provision/regulation, EP; Erosion prevention, CS/Rec: Cultural services (recreation)
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