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A B S T R A C T   

Dead fine fuel moisture content (FM) is one of the most important determinants of fire behavior. Fire scientists 
have attempted to effectively estimate FM for nearly a century, but we are still lacking broad scale evaluations of 
the different approaches for prediction. Here we tackle this problem by taking advantage or a recently compiled 
global fire behavior database (BONFIRE) gathering 1603 records of 1h (i.e., <6 mm diameter or thickness) dead 
fuel moisture content from measurements before experimental fires. We compared the results of models routinely 
used by different agencies worldwide, empirical models, semi-mechanistic models and also non-linear and 
machine learning approaches based on either temperature and relative humidity or vapor pressure deficit (VPD). 
A semi-mechanistic model based on VPD showed the best performance across all FM ranges and a historical 
model developed in Australia (MK5) was additionally recommended for low fuel moisture estimations. We also 
observed significant differences in FM dynamics between vegetation types with FM in grasslands more responsive 
to changes in atmospheric dryness than woody ecosystems. The addition of computational complexity through 
machine learning is not recommended since the gain in model fit is small relative to the increase in complexity. 
Future research efforts should concentrate on predictions at low FM (<10 %) as this is the range most significant 
for fire behavior and where the poorest model performance was observed. Model predictions are available from 
https://hcfm.shinyapps.io/shinyfmd/.   

1. Introduction 

Dead fuel moisture content (FM) is a key driver of fire ignition, 
behavior and risk (Cruz et al., 2014; Nolan et al., 2016). Low fuel 
moisture content enhances ignition while fostering fire propagation and 
intensity, hence increasing potential exposure and vulnerability to 
wildfires. The spatial-temporal patterns of FM are strongly tied to at-
mospheric conditions, fluctuating in parallel with surface temperature 
and relative humidity and additionally affected by processes like rain, 
solar radiation or soil moisture (Matthews, 2014; Resco de Dios et al., 
2015). Understanding how to model FM has proven to be a vexed 

problem in fire science for a very long time (Byram and Jemison, 1943). 
In principle, modeling water exchange processes from inert material 
should be straightforward, at least in comparison to live fuel where 
physiological, phenological and anatomical regulations operate. How-
ever, the hygroscopic nature of dead fuels, where water is gained 
through condensation, adsorption or precipitation, and water losses 
occur through desorption and evaporation (Viney, 1991), have led to FM 
modelling becoming a significant challenge. 

FM values are of crucial importance in fire management operations 
overall. For instance, fire behavior models and systems require FM as an 
indirect (Forestry Canada Fire Danger Group, 1992) or direct (e.g., 

* Corresponding author at: Department of Forest and Crop Science and Engineering, University of Lleida, Lleida, Spain. 
** Corresponding author. 

E-mail addresses: victor.resco@udl.cat (V. Resco de Dios), pfern@utad.pt (P.M. Fernandes).  

Contents lists available at ScienceDirect 

Agricultural and Forest Meteorology 

journal homepage: www.elsevier.com/locate/agrformet 

https://doi.org/10.1016/j.agrformet.2023.109868 
Received 7 March 2023; Received in revised form 6 December 2023; Accepted 19 December 2023   

https://hcfm.shinyapps.io/shinyfmd/
mailto:victor.resco@udl.cat
mailto:pfern@utad.pt
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2023.109868
https://doi.org/10.1016/j.agrformet.2023.109868
https://doi.org/10.1016/j.agrformet.2023.109868
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2023.109868&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Agricultural and Forest Meteorology 346 (2024) 109868

2

Rothermel, 1972) input to predict fire-spread rate. FM can be used to 
define thresholds for fire-use by the population, it is key to prepare burn 
prescriptions (Fernandes, 2018), and is the basis to predict fuel con-
sumption (Prichard et al., 2017). FM is additionally important as an 
overall indicator of fire danger (Cruz et al., 2014). However, FM cannot 
be easily measured in situ as it requires specialized equipment based on 
either time-domain reflectometry (e.g., CS-506, Campbell Sci, Logan, 
UT) or electrical resistance (Chatto and Tolhurst, 1997). Consequently, 
we are in need of FM models that are based on simple atmospheric 
variables like temperature, relative humidity or wind speed. To this end, 
while models of daily variation in FM suffice for fire danger rating, 
modeling hourly or sub-hourly variation is required to predict fire 
behavior for operational decision-making in the use or suppression of 
fire. Modeling daily FM serves a broad array of purposes, such as 
hindcasting analyses (Nolan et al., 2016) of the relationships between 
FM and fire activity and broad spatial scales, or other modeling exercises 
(Venevsky et al., 2019). 

One of the factors potentially affecting FM is the generic vegetation 
type. For example, FM may differ between grassland or woody fuels 
owing to physical differences in fuel particles and fuel beds and in 
microclimate between open and forested ecosystems (Biddulph and 
Kellman, 1998; Ray et al., 2005; Tanskanen et al., 2006). Some of the 
early FM models presented different formulations for forests and 
grasslands (Noble et al., 1980). However, it is more common to use a 
single equation across vegetation types. To which extent do differences 
between vegetation types affect FM modeling has not been extensively 
studied. 

Early fuel moisture assessment was based on tables, graphs or no-
mographs, while the equations were not given until computers became 
more accessible (Viney, 1991). Some examples include the models used 
by fire managers in Australia (FMMK5 and FMMcArthur; McArthur; Noble 
et al., 1980), the Canadian Forest Fire Weather Index (FMvanWagner; Van 
Wagner, 1987) and the US National Fire Danger Rating System (FMNelson 
and FMSimard; Nelson 1984; Simard, 1968). Over time, models of FM 
became more sophisticated, and changed from being empirical to more 
mechanistic approaches such as those based on vapor pressure deficit 
(Resco de Dios et al., 2015), equilibrium moisture (Simard, 1968) or 
very simple scaling indexes like the FMI (Sharples and McRae, 2011). A 
common approach in these models has been to develop separate cali-
brations across vegetation types, specially to separate between litter and 
grassy fuelbeds. Recent developments in complex algorithms, such as 
Generalized Additive Modelling (GAM) or machine learning, provide 
new avenues for predicting FM (Matthews, 2014). 

In this study we seek to resolve the long-standing question of which 
approach is most effective for modelling FM. To this end, we evaluate 
current approaches and more complex algorithms to estimate FM using a 
global dataset of gravimetric moisture measurements. We compare the 
models across a range of moisture values, but with specific focus on 
situations of low FMC conducive to extreme wildfire behavior (below 10 
%; Flannigan et al., 2013; Wotton et al., 2017). Additionally, we also 
wanted to test whether more complex algorithms would perform better 
than traditional approaches. We calibrated a model using GAM splines 
and two models based on machine learning approaches (random forests; 
RF) and support vector machines (SVMs). Finally, we addressed possible 
differences across vegetation types (grassland, woodland, and forest). 
We also explored the potential of Linear Mixed models with random 
effects in the intercepts as a function of vegetation type. 

2. Materials and methods 

2.1. The BONFIRE database 

Our analyses used the BONFIRE database, a comprehensive compi-
lation of fire behavior-related data collected from experimental fires, 
prescribed burns and wildfires around the world (Fernandes et al., 
2020). We considered only the experimental fires in the database and 

retained 1603 records of one-hour (1 h, i.e., fine fuels, <6 mm diameter 
or thickness) FM measurements for which weather variables were 
concurrently available. The nature of the BONFIRE database, resulting 
from numerous sources and various experimental protocols, implies 
variable FM sampling and weather acquisition procedures. The upper 
(top 5–20 mm) litter and/or the slash, grass and shrub profiles, which 
can be contiguous or elevated in relation to the litter, are the target of 
dead fine FM sampling in fire behavior experiments, given their domi-
nating role in fire spread (Cheney, 1990). In treeless environments we 
considered only the FM of samples taken from the elevated, often the 
only, component of the grass or shrub fuel profile. Forest and woodland 
studies report the dead fine FM of each fuel layer or, more commonly, a 
composite FM content; in the former case we averaged the individual FM 
contents, weighted by their respective fuel loads. FM is sampled just 
before lighting the fire or, less frequently, also immediately after 
fire-spread cessation. The number of FM replicates varies, from one 
larger sample comprising material from different locations within or 
nearby the burn plot, to several (seldom more than five) smaller sam-
ples. The manually collected samples are sealed in bags or tins and in the 
laboratory are weighed, dried in an oven (typically at >80 ◦C for at least 
8 h), and reweighed. FM content is expressed as a percentage of the dry 
weight. Records with FM higher than 35 % were left out as that is the 
saturation point (Berry and Roderick, 2005). 

The BONFIRE database features field measurements of basic weather 
parameters, namely in-stand surface (1.5–2 m) air temperature (T), 
relative humidity (RH), and vapor pressure deficit (calculated from RH 
and T), as well as wind speed (WS) at variable heights (1-2, 6 and 10 m); 
WS was not available at all sites and it was subsequently discarded. 
Weather data was continuously collected during the fire or, less often, 
just before ignition or just before and just after the fire experiment. The 
database also comprises ancillary data such as the Köppen-Geiger 
climate codes (Beck et al., 2018), average temperature and annual 
rainfall (retrieved from the Wordclim 2 dataset; Fick and Hijmans, 
2017), the type of vegetation community (Bonan, 1996) and some fuel 
bed characteristics (height and load). As of December 2022, the data-
base features 153 experiments spanning from 1970 to 2020, covering 21 
countries, with data from all terrestrial biomes except the tundra and the 
tropical rainforest (Fig. 1). 

2.2. Data subsetting for model calibration and validation 

To adequately assess the predictive ability of the numerous modeling 
tools and techniques presented in this study, a data partitioning strategy 
is required to optimize model hyperparameters (i.e., the set of variables/ 
parameters that a given model requires to be specified) and test their 
performance with an independent set of observations. Several studies 
show that performance estimates reported by a regular random test 
subset are often biased if the spatial structure is disregarded (Meyer 
et al., 2018; Schratz et al., 2019). That is, model performance estimates 
are often overly optimistic (e.g., smaller MAE) due to spatial overfitting 
leading to information redundancy. Therefore, a spatial clustering 
approach is required to partition the data into calibration and validation 
subsets (Airola et al., 2019). 

We applied the spatial resampling method described in Meyer et al. 
(2018) to prevent model misspecification due to underlying spatial 
autocorrelation. Our method implements a k-fold cross-validation where 
data is divided into k equally sized folds subsequently sampled using a 
leave-location-out procedure (LLO). In this way, we achieved more 
realistic performance yields and results, avoiding overoptimistic out-
comes due to spatial overfitting and, thus, redundancy in the data 
(Meyer et al., 2018). As we only needed one common test subset to 
compare all models, we kept the partition closest to the desired CAL-VAL 
proportion in number of sampled records. We explored several propor-
tional splits in terms of k, namely k = 2 is 50/50, k = 3 is 66/33, k = 4 is 
75/25, and so on. Furthermore, the LLO was conducted following a 
stratified sampling scheme using the vegetation type field to ensure a 
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balanced representativeness of the surveyed vegetation communities. 
The process was repeated 30 times, comparing the spatial (LLO) and 
non-spatial (random k-fold sampling) split methods, assessing the FM 
estimates from the BONFIRE database as described in Section 2.3.1. 

Fig. A1 shows the average (points) and the 5th and 95th percentile 
range (bars) of the MAE from calibration and validation estimates of FM 
derived from the 30 data split repetitions. Spatial overfitting must be 
suspected if the difference in terms of model performance between 
random data splitting (lower error estimates) and stratified-LLO (higher 
error estimates) is high, though this is not the case. Random subset 
validation generally showed lower variance (that is, repeated sampling 
produces different values) in MAE because locations used for the vali-
dation are used for training. In the stratified-LLO we see higher variance 
in MAE either in CAL and VAL, which suggests dependence in a 
particular data partition. As we can see in Fig. A2 a proportion of 66/33 
(k = 3) achieved a good balance between bias-variance and a high 
correlation between CAL and VAL performance estimates. Furthermore, 
the number of samples in CAL (n = 1049) were sufficient for training 
those models that required hyperparameters to be optimized (GAM, RF 
and SVM algorithms). For the final selection (that is, stratified-LLO and 
k = 3), we examined whether the distribution of the response in VAL (n 
= 551) was similar to the distribution of CAL dataset either in FM or 
vegetation type representativeness Fig. A2). 

The performance of the models was evaluated according to the mean 
absolute error (MAE), the mean biased error (MBE) and the root mean 
square error (RMSE) calculated from the difference between observed 
(O) and predicted (P) data in the test sample. We further explored model 
performance by fitting the regression line of observed against predicted 
FM. This enabled calculating the coefficient of determination while 
providing more insightful estimates through the intercept (β0) and slope 
(β1) of the O-P relationship (Piñeiro et al., 2008). Complementarily, 
model performance was addressed using the subset of observations with 
FM < 10 % to provide insights into the most hazardous weather con-
ditions (Flannigan et al., 2013; Wotton et al., 2017). In this way, we 

tested the capability of the approaches to forecast low fuel moisture 
conditions that would potentially foster extreme wildfire behavior 
(Cruz et al., 2014). All analyses were carried out using the R Language 
for Statistical computing (R Core Team, 2023). 

2.3. Modeling approaches 

We investigated the adequacy of different indices and modeling 
strategies to estimate FM. We calculated FM using the main mechanistic 
approaches leveraging temperature (T), relative humidity (RH) and 
vapor pressure deficit (D) measurements from the calibration dataset 
(Sections 2.3.1 and 0). In turn, we regressed T, RH and D into FM 
exploring multiple modeling alternatives (sections 0 and 0). All models 
were implemented using the R Language for Statistical computing (R 
Core Team, 2023). Table 1 summarizes the modeling approaches cali-
brated and compared in this work. 

2.3.1. Current modeling approaches 
A first iteration of models was based on existing empirical methods to 

estimate dead fuel moisture content based on relative humidity and air 
temperature. These included: 

The equilibrium fuel moisture model of Simard (1968): 

FMSimard =

⎧
⎨

⎩

0.03 + 0.2626 RH − 0.00104 RH T;RH < 10%
1.76 + 0.1601 RH − 0.02660 RH T;RH ≥ 10% RH < 50%

21.06 − 0.4944 RH2 − 0.00063 RH T;RH ≥ 50%
(1)  

where RH is relative air humidity (%) and T temperature (◦C). 
The equilibrium fuel moisture model of Van Wagner (1972), 

currently implemented in the Canadian Forest Fire Weather Index (Van 
Wagner, 1987). This model considers the hysteresis in the drying (d) or 
wetting (w) cycles: 

Fig. 1. Overview of the BONFIRE database selected records. (a) geographical distribution of measurement sites; (b) latitudinal trend in FM; (c) longitudinal trend in 
FM; (d) Whittaker biomes plot. 
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FMWagner,d = 0.942 RH0.679 + 0.000499e0.1 RH + 0.18 (21.1 − T)
(
1 − e− 0.115 RH)

FMWagner,w = 0.618 RH0.753 + 0.00049954 + 0.18 (21.1 − T)
(
1 − e− 0.115 RH)

(2) 

Because here we could not know the phase, we fitted both models (d 
and w) separately. 

The equilibrium fuel moisture model of Nelson (1984): 

FMNelson = a + b ln

⎛

⎜
⎜
⎝

− R T

M ln
(

RH
100

)

⎞

⎟
⎟
⎠ (3)  

where a and b are fitting parameters (calibrated using linear least- 
squares fitting), and R and M are the universal gas constant and the 
molar mass of water, respectively. 

The fuel moisture index (FMI) by Sharples et al. (2009): 

FMI = a − b(T − RH) (4)  

where c and d are model coefficients (calibrated using linear least- 

squares fitting). It is important to not that FMI is not a fuel moisture 
model as such, but an index providing an equivalent scale for dead fuel 
moisture content. 

Fuel moisture for the McArthur’s forest fire danger index (McArthur, 
1967) using Viney’s parameterization (Viney, 1991): 

FMMcArthur = 5.658 + 0.04651 RH + 0.0003151
(

RH
T

)

− 0.1854 T0.77 (5) 

The semi-mechanistic approach (FMD) by Resco de Dios et al. (2015): 

FMD = FM0 + FM1 e− mD (6)  

where D is vapor pressure deficit (kPa), FM0 is the minimum FM in the 
dataset (a measured value), FM0+FM1 indicate the maximum fuel 
moisture and m indicates the rate of FM decay with D. FM1 and m were 
obtained through non-linear squares fitting. 

The McArthur’s forest fire danger index using MK5 parameterization 
(Noble et al., 1980): 

FMMK5 =
97.7 + 4.06 RH

T + 6
− 0.00854 RH (7)  

2.3.2. Alternative modeling approaches 
We have also developed custom models based on specific parame-

terizations and grouping strategies using dummy variables (categorical 
variables acting as grouping factor in a model) and model splitting ac-
counting for vegetation types, i.e., fitting separate models per vegetation 
type. We built two empirical models based on linear regression. The first 
model (EMPRH, Eq. (8)) is based on RH and temperature and the second 
(EMPD, Eq. (9)) is on vapor pressure deficit (D): 

EMPRH = a + b T + c RH (8)  

EMPD = a + b log(D) (9)  

where a, b and c are the parameters to be calibrated. 
We considered the effect of vegetation classes in FM predictions 

(Bonan, 1996), namely forest (deciduous, needleleaf evergreen and 
mixed forests), shrubland (deciduous, evergreen and open shrubland), 
grassland and woodland. We reworked all models susceptible of being 
calibrated (FMNelson, FMI, FMD, EMPRH and EMPD) including the vege-
tation type as dummy variable (*_veg). The values of the calibration co-
efficients are available in Table A2. 

2.3.3. Linear mixed models 
A final set of models was calibrated using linear mixed models 

(LMMs). LMMs are particularly suitable when repeated measurements of 
a given variable are taken at one location or to account for possible 
differences between experiments (Breslow and Clayton, 1993). Experi-
ment reference and location were considered as random factors, and 
only random effects associated with the intercept were evaluated. 
Because some sites encompass several studies, we did not consider 
nested random factors. We used either RH (LMMRH) or D (LMMD). We 
followed the guidelines of West et al. (2014) and Faraway (2016) to 
perform LMM analyses. We performed χ2-tests, F-tests, and the Ken-
ward–Roger method (described in Faraway et al., 2016) to evaluate the 
significance of fixed-effect parameters. LMMs were calibrated and 
evaluated using the lme4 (Bates et al., 2015), lmerTest (Kuznetsova et al., 
2017) and pbkrtest (Halekoh and Højsgaard, 2014) R package packages 
(R Core Team, 2023). We also compared models by means of likelihood 
ratio tests (LRT) via anova (with ML and REML estimations), as well as 
the exactRLRT function from the RLRsim package (Scheipl et al., 2008), 
which uses bootstrap simulations to calculate exact LRT (Faraway, 
2016). 

2.3.4. Generalized additive models and machine learning approaches 
Following the recommendations by Masinda et al. (2021) and Lee 

Table 1 
Summary of models calibrated for predicting FM. Asterisk denotes models also 
calibrated including the vegetation type as dummy variable (*_veg). RH, relative 
humidity; T, air temperature; VPD, vapor pressure deficit; veg, vegetation type.   

Model Predictors Acronym Source 

Current 
modeling 
approaches 

Equilibrium 
model of Simard 

RH, T FMSimard Simard 
(1968) 

Equilibrium 
model of Van 
Wagner 

RH, T FMWagner,d/w Van Wagner 
(1987, 1972) 

Equilibrium 
model of Nelson* 

RH, T FMNelson Nelson (1984) 

Fuel moisture 
index by 
Sharples 

RH, T FMI 
Sharples et al. 
(2009): 

McArthur’s 
forest fire danger 
index 

RH, T FMMcArthur McArthur 
(1967);  
Viney (1991) 

Semi- 
mechanistic 
approach by 
Resco de Dios* 

VPD FMD Resco de Dios 
et al. (2015) 

McArthur’s 
forest fire danger 
index MK5 

RH, T FMMK5 Noble et al. 
(1980) 

Alternative 
modeling 
approaches 

Empirical model 
based on RH* 

RH, T EMPRH Custom model 

Empirical model 
based on VPD* 

VPD EMPD Custom model 

Linear mixed 
models 

Linear mixed 
model based on 
RH 

RH, veg LMMRH Faraway 
(2016), West 
et al. (2014) 

Linear mixed 
model based on 
VPD 

VPD, veg LMMVPD Faraway 
(2016), West 
et al. (2014) 

Non-linear 
models 

Generalized 
additive model 
using Gibbs 
index 

Gibbs 
index, 

GAMG Hastie and 
Tibshirani 
(1986) 

Generalized 
additive model 
using VPD 

VPD GAMVPD Hastie and 
Tibshirani 
(1986) 

Support Vector 
Machines 

RH, T, 
VPD, veg 

SVMveg Cortes and 
Vapnik 
(1995) 

Random Forest RH, T, 
VPD, veg 

RFveg Breiman 
(2001)  
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et al. (2020), we investigated the predictive ability of more complex 
modeling algorithms enabling non-linear responses in the relationships 
between FM, RH, T and VDP. We tested Generalized Additive Models 
with splines (GAM; Hastie and Tibshirani, 1986), Random Forests (RF; 
Breiman, 2001) and Support Vector Machines (SVM; Cortes and Vapnik, 
1995). 

We fitted two univariate GAM models using VPD (GAMD) and the 
Gibbs index (GAMG), separately. The smoothing parameter was opti-
mized using a 10-fold leave-one-out cross-validation and 5 repetitions 
with the calibration subset. In the case of RF and SVM, we leaned to-
wards multivariate models, also introducing the vegetation class as co-
variate (RFveg and SVMveg). RF was optimized in terms of the number of 
trees and number of variables at each split. With SVM, we sought to 
minimize the effect of outliers or highly influential observations on the 
regression equations (Kuhn and Johnson, 2013). After an initial 

evaluation, we discarded SVM with polynomial and radial kernel func-
tions because they showed some artifacts in the prediction, hence we 
focused solely on the linear function approach. For SVM linear, we 
assessed different values of the cost hyperparameter (the single one 
involved in the linear kernel function) and model formulations and here 
we report only the results from the best combination. 

3. Results 

3.1. Links between FM, weather and vegetation type 

FM showed a clear association with RH, T and D. As expected, FM 
increased with RH and decreased with T, D, logD (Pearson’s R = 0.52, R 
= -0.49 and -0.56, respectively; Fig. 2). The strongest association was 
found with RH and log D, following a quasilinear profile. This linear 

Fig. 2. Relationship between FM and the explanatory variables per vegetation type. The red line shows the LOESS smoothed profiles.  
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pattern was consistently observed across vegetation types. However, the 
marginal distribution of FM per vegetation type suggested significantly 
lower (p < 0.05) moisture content in grassland communities, with the 
remaining woody vegetation types displaying similar FM percent con-
tent. Median FM was approximately 5 % lower in grassland communities 
(FM ≈ 14 %), compared to forest, shrubland or woodland vegetation 
types (FM ≈ 9.5 %). 

3.2. Model performance 

Predictions’ accuracy was moderate among the candidate models 
when considering the full range of FM with R2 and MAE ranging be-
tween 0.24–0.44 and 3.85–6.05, respectively. Noticeably, performance 

dropped considerably when focusing on FM below 10 %, with the best 
model standing at an R2 of 0.16. 

Among the current approaches, empirical models (EMPRH and 
EMPD) showed the best performance on testing data (Fig. 3). The linear 
mixed model based on RH (LMMRH; MAE = 3.8, MBE = -0.7, R2 = 0.43) 
and the empirical models based on RH (EMPRH_veg; MAE = 4.0, MBE =
-0.3, R2 = 0.41) performed slightly better than the recalibrations of FMI 
(FMI_veg; MAE = 4.0, MBE = -0.3, R2 = 0.40) and FMD (FMD_veg; MAE =
4.1, MBE = -0.2, R2 = 0.40). Most models tend to underestimate FM 
(slope > 1 and negative MBE) when considering the entire range of 
moisture content (from 4 to 35 %). Machine learning (RF and SVM) 
approaches and LMM, all of them including the effect of vegetation as a 
dummy variable, provided small improvements relative to traditional 

Fig. 3. Summary of the prediction performance from the validation sample. (a) current approaches; (b) linear mixed models; (c) machine learning models and GAM. 
The dashed line displays the axis of perfect prediction while the red solid line displays the linear relationship between predicted and observed values. 
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approaches. SVMveg was the best alternative in global FM models (MAE 
= 3.89; MBE = -0.94; R2 = 0.44). GAM models attained mid-tier per-
formances. GAMD was affected by some apparent outliers and showed an 
artifact in the predictions, saturating at 10 % FM (see Fig. A3). The 
GAMG model did not show the prediction artifact and reached similar 
performance (MAE = 4.21; MBE = -0.94; R2 = 0.33) than the analogous 
Nelson model (MAE = 4.25; MBE = -0.47; R2 = 0.31), but with higher 
intercept and MBE. Hence, Nelson’s models would be preferable since 
they are simpler. 

Model performance substantially dropped when assessing the capa-
bility for predicting FM below the 10 % threshold (Fig. 4). LMMRH and 
SVMveg were the best alternative to model low FM, though still with poor 
performance (R2 = 0.16;0.14, respectively). FMMK5 reported the lowest 
MAE (2.36), and it was not biased in its predictions (MBE = 0.4), but it 
showed high overall uncertainty (R2 = 0.11). For FM<10 %, models 
based on VPD such as the empirical model and FMD ranked among the 
highest in terms of R2. It is worth noting that RH-based models were 
often more suitable to model FM, but when focusing on low FM, those 
considering vapor pressure deficit (e.g., EMPD_veg, FMD_veg) offered 
better predictions. In turn, models tend to overestimate (positive MBE) 
when assessing FM<10 % (Figs. 4, A5, Tables 1, 2 and Table A1). 

Consideration of vegetation type contributed to improving perfor-
mance in all modeling approaches (*_veg). Likewise, the ML, GAM and 
LMM models, which intrinsically accounted for vegetation type, 
consistently outperformed the other approaches by a narrow margin. 

4. Discussion 

In this paper we provide a comprehensive evaluation of current al-
ternatives in forecasting the moisture content of dead fine fuel. An 
extensive global database compiling records from multiple studies, re-
gions, biomes, climates, and vegetation types has been used to 

determine which modeling approach is best and to what extent moisture 
content can be predicted. Multiple approaches are available, with a large 
number of indexes and algorithms. Here, we showcase the main indices 
based on temperature, relative humidity or vapor pressure deficit, while 
investigating different improvement alternatives as well as the most 
widespread modeling frameworks. 

4.1. Model selection 

The link between relative humidity and FM is stronger when 
modeling the entire range of FM, but predictions under low FM condi-
tions (FM<10 %) were more reliable (though still weak) when involving 
VPD. Recommending a single model for daily predictions of FM requires 
a suitable model for the whole range of FM as well as for low conditions. 
In this sense, the version of FMD that incorporates different vegetation 
types (FMD_veg) offers a good balance between performance and 
simplicity. FMD_veg was the only model amongst the top best performing 
models for both, the entire dataset and FM<10 %, when the R2 between 
observed and predicted is chosen as criteria to select the best performing 
model. Hence, we recommend FMD_veg for a generic estimation of FM 
across the full data range, including when FM<10 %. Additionally, 
FMMK5 showed very low MAE when FM<10 %, indicating its suitability 
for predictions under low FM. The performance of the models presented 
in our work is close to that of previous efforts with similar approaches. In 
our analyses, the reformulated version (FMD_veg: MAE = 4.06, R2 = 0.40) 
of the Resco de Dios et al. (2015) FM index shows better performance 
than its original counterpart (FMD: MAE = 4.27, R2 = 0.35). The per-
formance metrics have slightly dropped compared to Resco de Dios 
et al. (2015), especially in the models whose target FM is less than 10 % 
(FMD_veg: MAE = 4.23, R2 = 0.11; FMD: MAE = 1.77, R2 = 0.19). But it 
should be noted that the BONFIRE database covers a wider range of 
geographical and bioclimatic environments around the world, so a 

Fig. 4. Summary of the prediction performance from the validation sample for FM below 10 %. (a) current approaches; (b) linear mixed models; (c) machine learning 
models and GAM. The dashed line displays the axis of perfect prediction while the red solid line displays the linear relationship between predicted and 
observed values. 
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closer approach to regional models could lead to better performance. 
SVMveg would be the preferred alternative for a global FM model. 

However, improvements in performance compared with very simple 
models like the recalibration of FMI (FMIveg), a regression against 
temperature and RH (EMPRH_veg) or FMD (FMD_veg) were minor in terms 
of MAE (0.1-0.2 %) and of R2 (<0.04). Machine learning and linear 
mixed models performed slightly better, but the need for optimization 
(e.g., SVM hyperparameters) and complexity of their interpretation 
(LMM) hinder their usefulness. In this sense, the FMD_veg seems a suitable 
approach, attaining a good prediction capability overall (R2 = 0.40, 0.12 
when FM<10 %). 

A commonality across all models was an overall limited predictive 
capacity towards the drier end (<10 % FM). This is a very important 
limitation as the response of rate of spread to fuel dryness is exponential 
(Rothermel, 1972). Consequently, even small FM changes of 1 % can 
have substantial impacts. Here we only considered meteorological 
drivers but additional factors alter FM. Differences in fuel bed depth 
could alter the relationship between FM and meteorological drivers as 
deep fuel beds will be more resistant to drying (Matthews, 2014; Pook 
and Gill, 1993). Soil moisture has sometimes been documented to affect 
FM (Zhao et al., 2022). These factors can be incorporated within more 
realistic fuel moisture models, but they require more parameters than 
the ones available for the sites within our dataset (Matthews, 2006). 
There are also species differences in anatomical attributes that alter 
water relations, as will be discussed in the next section. Predicting FM at 
the lower end should thus be at the forefront of our research efforts. But 
selecting a model for the drier end is more difficult. Based upon MAE, 
either FMSimard or FMMK5 would be preferable as they had the lowest 
MAE (2.4 %). However, these models performed very poorly when using 
the global dataset and FMSimard also showed amongst the lowest R2 

(0.04). Although we have previously recommended FMD_veg due to its 
relatively high R2, we must note that its MAE in the lowest FM range was 
4.2 %, which is amongst the highest for all models. 

One of the potential reasons underlying poor model fit lies in the 
limitations of using a global dataset where different sampling and 
measurement protocols have been used. These include different oven- 
drying temperatures, including the use of temperatures <105◦C that 
have been shown to underestimate FM (Matthews, 2010), differences in 
the timing of sample collection as well as in topographic position and 
canopy cover that affect the exposure to solar radiation. Wind speed is 
an additional important aspect that was not considered in this study and 
there could also be some “contamination” by dew, recent rainfall or duff 
moisture (Viney 1991). 

Models with a higher degree of computation intensity, such as GAM 
fitting or machine learning, have been gaining attention in recent years 
(Matthews, 2014). However, these models did not solve the issue of poor 
model performance under low FM. Considering the limited gains in 
model fitting, and the increasing complication associated with 

predictions and computational costs, we do not recommend these 
techniques for FM modeling. Finally, we acknowledge that ML ap-
proaches may have not been fairly tested here because of the few vari-
ables involved. ML approaches have the potential to integrate a wide 
range of response variables and may be more useful in developing 
gridded estimates of dead fuel moisture content. Subsequent work 
should address this possibility. The use of a reduced set of predictors 
(temperature, relative humidity and VPD) may hinder their capacity to 
model FM. 

Vapor pressure deficit has been gaining traction as an overall indi-
cator of fire activity globally (e.g., Clarke et al., 2022). Our results 
provide an additional basis to these results as we have shown how FMD, 
a VPD-based fuel moisture model, was amongst the best models to use 
across the entire FM range. Ignitions under high VPD will be more likely 
to spread and will spread faster due to fuel drying and, additionally, spot 
fires may consequently increase under high VPD (Nolan et al., 2016; 
Slijepcevic et al., 2015). 

4.2. Effects of vegetation 

We observed significant differences in dead fuel moisture content 
between grasslands and the other vegetation types. This is likely 
showing that dead fuel moisture in grasslands reflects cured grass while 
dead fuel moisture in woody vegetation reflects dead leaves and twigs, 
either in the litter or in an elevated position (Anderson, 1990). Differ-
ences in litter accumulation rate across vegetation types, leading to 
differences in fuel bed depth, may have also contributed to the response 
(although one hour moisture is often assessed from material from the top 
1-2 cm). In other words, differences in fuel traits (particle size, surface 
area to volume ratio, fuel bed depth and compactness) are affecting the 
rate of water loss. Additionally, differences in radiation transfer and 
aerodynamic properties between grassy and woody canopies likely led 
to different meteorological conditions at the surface, where dead fuels 
are lying, even if weather measurements were all taken at the same 
height (typically 1.5–2 m). 

These results highlight the importance of assessing FM in grasslands 
and woodlands separately, the former often depicting lower moisture 
content. Grasslands are more directly and thoroughly exposed to solar 
radiation and wind speed, and they may also comprise finer materials 
(with a faster response). These diverging FM responses between grass-
lands and woody ecosystems may be one of the factors contributing to 
differences in fire activity between grassy and litter fuels (Boer et al., 
2021). All models considering the effect of vegetation, either directly 
embedding it as a covariate (e.g., SVMveg) or splitting models across 
vegetation types (e.g., FMD_veg, FMI_veg) outperformed global ap-
proaches (Table A1). 

Further work would be required to expand and complete the findings 
from this work. For instance, additional covariates to incorporate 

Table 2 
Summary of model performance from the validation sample. MAE: mean absolute error; RMSE: root mean square error; β0, β1 and R2 indicate the intercept, slope and 
square R of the regression line between observed-predicted.  

Full range of moisture content (4–35 %) FM < 10 % 

Model MAE MBE RMSE β0 β1 R2 Model MAE MBE RMSE β0 β1 R2 

SVMveg 3.89 -0.94 5.26 -3.02 1.32 0.44 LMMD 3.62 3.45 4.33 2.82 0.39 0.16 
LMMRH 3.85 -0.72 5.17 -1.81 1.2 0.43 SVMveg 3.25 3.03 4.00 3.06 0.38 0.14 
EMPRH_veg 3.96 -0.31 5.24 -1.98 1.17 0.41 EMPD_veg 4.23 4.10 4.91 3.01 0.35 0.12 
FMI_veg 3.97 -0.36 5.28 -1.78 1.16 0.40 FMMK5 2.36 0.36 2.97 4.73 0.29 0.11 
FMD_veg 4.06 -0.21 5.25 -1.82 1.13 0.40 FMD_veg 4.23 3.43 4.85 2.65 0.38 0.11 
EMPD_veg 4.07 0.08 5.25 -2.4 1.17 0.40 GAMD 4.50 4.50 5.16 2.36 0.39 0.11 
RFveg 4.11 0.08 5.41 -1.72 1.12 0.36 EMPRH_veg 3.78 3.58 4.60 3.93 0.28 0.09 
FMvanWagner,d 4.19 -1.55 5.59 2.83 0.89 0.37 FMvanWagner,a 2.45 0.37 3.15 5.12 0.23 0.08 
GAMG 4.21 -0.54 5.61 -2.40 1.23 0.33 FMI_veg 3.76 3.55 4.60 4.10 0.26 0.08 
FMSimard 5.90 -5.32 7.7 4.48 1.1 0.32 FMMcArthur 2.37 -1.41 2.81 4.54 0.42 0.07 
FMNelson_veg 4.20 -0.47 5.64 -0.04 1.04 0.31 FMSimard 2.36 -0.91 2.89 5.37 0.24 0.04 
FMMcArthur 6.05 -4.98 7.89 8.18 0.62 0.29 GAMG 4.02 3.97 4.85 4.45 0.22 0.03 
FMMK5 4.93 -2.17 7.98 8.92 0.4 0.24 RFveg 4.35 4.30 5.28 5.56 0.11 0.01  
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topographic effects or gridded datasets to replace invalid observation 
data (e.g., wind observations). Moreover, most of the methods used in 
this paper are empirical, so their parameters must be tested using 
regional or local samples and further evaluation is required in those 
regions not comprised in our database. 
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Tanskanen, H., Granström, A., Venäläinen, A., Puttonen, P., 2006. Moisture dynamics of 
moss-dominated surface fuel in relation to the structure of Picea abies and Pinus 
sylvestris stands. Forest Ecol. Manag. 226, 189–198. https://doi.org/10.1016/j. 
foreco.2006.01.048. 

Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather 
index system. Forestry Technical Report 35. Canadian Forest Service Publications, 
Ottawa, p. 35. 

Van Wagner, C.E., 1972. Equilibrium moisture contents of some fine forest fuels in 
eastern canada (no. information report ps-x-36.). Canadian Forestry Service, 
Petawawa Forest Experiment Station, Chalk River, Ontario. 

Venevsky, S., Le Page, Y., Pereira, J.M.C., Wu, C., 2019. Analysis fire patterns and drivers 
with a global SEVER-FIRE v1.0 model incorporated into dynamic global vegetation 
model and satellite and on-ground observations. Geosci. Model. Dev. 12, 89–110. 
https://doi.org/10.5194/gmd-12-89-2019. 

Viney, N., 1991. A review of fine fuel moisture modelling. Int. J. Wildland Fire 1, 
215–234. 

West, B.T., Welch, K.B., Galecki, A.T., 2014. Linear Mixed Models: A Practical Guide 
Using Statistical Software, Second Edition. Chapman and Hall/CRC. https://doi.org/ 
10.1201/b17198. 

Wotton, B.M., Flannigan, M.D., Marshall, G.A., 2017. Potential climate change impacts 
on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. 
Lett. 12 https://doi.org/10.1088/1748-9326/aa7e6e. 

Zhao, L., Yebra, M., van Dijk, A.I.J.M., Cary, G.J., 2022. Representing vapour and 
capillary rise from the soil improves a leaf litter moisture model. J. Hydrol. 612, 
128087 https://doi.org/10.1016/j.jhydrol.2022.128087. 

M. Rodrigues et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0045
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1016/j.ecolmodel.2019.06.002
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0047
https://doi.org/10.1016/j.envsoft.2008.10.012
https://doi.org/10.1016/j.envsoft.2008.10.012
https://doi.org/10.1016/j.foreco.2014.09.040
https://doi.org/10.1016/j.foreco.2006.01.048
https://doi.org/10.1016/j.foreco.2006.01.048
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0052
https://doi.org/10.5194/gmd-12-89-2019
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00558-0/sbref0055
https://doi.org/10.1201/b17198
https://doi.org/10.1201/b17198
https://doi.org/10.1088/1748-9326/aa7e6e
https://doi.org/10.1016/j.jhydrol.2022.128087

	VPD-based models of dead fine fuel moisture provide best estimates in a global dataset
	1 Introduction
	2 Materials and methods
	2.1 The BONFIRE database
	2.2 Data subsetting for model calibration and validation
	2.3 Modeling approaches
	2.3.1 Current modeling approaches
	2.3.2 Alternative modeling approaches
	2.3.3 Linear mixed models
	2.3.4 Generalized additive models and machine learning approaches


	3 Results
	3.1 Links between FM, weather and vegetation type
	3.2 Model performance

	4 Discussion
	4.1 Model selection
	4.2 Effects of vegetation

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


